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ABSTRACT

This paper proposes a new cryptanalysis attack of factoring prime
power moduli N = prqs for r, s ≥ 2 and r > s by applying continued
fractions method to find decryption exponent d from the convergents of
the continued fractions expansion of e
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then prime factors p and q of the moduli N = prqs can be found in
polynomial time. The paper also proposes two new attacks that lead to
the simultaneous factorization of t prime power moduli Nj = prjq

s
j us-

ing generalized system of equation of the form ejd− kjφ(Nj) = 1 and
ejdj − kφ(Nj) = 1 by applying simultaneous Diophantine approxima-
tions and LLL algorithm techniques.
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1 INTRODUCTION

The RSA cryptosystem invented by great mathematicians ( Rivest, Shamir and
Adleman) is considered to be one of the most practical public key cryptosystem
in today’s digital economy due to its numerous applications in web browsing,
e-commerce, e-banking, digital signature and smart cards, Rivest and Adleman
(1978).

The security of the cryptosystem is based on the integer factorization prob-
lem. Many researches are being conducted and reported to have break the
security of the cryptosystem making it vulnerable to attacks using various
techniques which include continued fractions method as reported by Wiener
(1990), de Weger (2002), Maitra and Sarkar (2008), Chen C.Y. Hsueh and Lin
(2009), Nitaj et al. (2014), Bunder and Tonien (2017), Abubakar et al. (2018),
Ariffin et al. (2019), etc, Coppersimth’s technique based on Lattice construc-
tion method as reported by Boneh and Durfee (1999), Blömer and May (2004),
Hinek (2008),Sarkar (2016), among others.

Many variants of RSA cryptosystem have been proposed in order to achieve
high efficiency in the decryption process. These variants include multi prime
RSA of the form N = p1p2, p3, . . . , pn, as reported by Collins et al. (1998),
Takagi scheme with moduli N = prq as presented by Takagi (1998), also
known as prime power RSA for r ≥ 2, generalization of the Takagi cryp-
tosystem with moduli N = prqs for r, s ≥ 2 and gcd(r, s) = 1 proposed
by Lim et al. (2000). Many attacks related to the factoring problem of multi
prime with modulus N = p1p2, p3, . . . , pn were reported by Herrmann and
May (2007), Hinek (2008), Santoso et al. (2008), Zhang and Takagi (2013),
Zheng et al. (2017). Cryptanalysis attacks for factoring Takagi scheme with
moduli N = prq is being reported by Nitaj et al. (2014), Ariffin and Shehu
(2016),Sarkar (2016), etc.

As for the RSA-like scheme with moduli N = prqs for r, s ≥ 2 and
gcd(r, s) = 1, Lim et al. (2000) was the first to have reported the factoring
of the moduli in polynomial time using Takagi’s method except that the de-
cryption process is faster than that of Takagi. In their research work, Lim et
al. reported that the moduli N = prqs is faster than the Takagi’s cryptosys-
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tem which is faster than the standard RSA scheme, Lim et al. (2000). In their
experiment, Lim et al. proved that for a moduli N = p3q2, the decryption
process is 15-times faster than the standard RSA modulus of the same bit size,
Lim et al. (2000). Moreover, the security of the cryptosystem with the mod-
uli N = prqs also relies on the hardness of factoring a very large composite
integer into its two distinct prime factors.

Since then, very little research works have been reported on the secu-
rity of the prime power moduli N = prqs. Coron et al. (2016) showed
that the polynomial time algorithm of N = prqs only requires the condition
r = ω(log32 max{p, q}), under which a constant number of bits need to be
given and thus can be obtained through exhaustive search, Coron et al. (2016).
Also Lu et al. (2017) proposed that one can factor the moduli N = prqs

in polynomial time if min{ r
r+s ,

2|r−s|
r+s }-fraction of the least significant bits

(LSBs) of one of the prime factors p, q is known and have same bit size, for
r, s ≥ 2 and gcd(r, s) = 1 Lu et al. (2017). Later, Coron et al. (2018) revisited
their work and improve it by obtaining a weaker condition of r = ω(log2 q) as
the required number of bits that need to be known for the attack to be mounted
successfully, Coron and Zeitoun (2018). In order to improve the works of
Lu et al. (2017), Coron et al. (2016), Coron and Zeitoun (2018), Wang et al.
(2019), proposed a better lattice construction attack on the moduli N = prqs

where they showed that the polynomial time factorization of the prime power
moduliN = prqs requires a condition of ς > αβ(su−ru) log2N by selecting
u, v such that su − rv = 1 is satisfied which is sufficient to recover p and q.
They further proved that, for the polynomial-time factorization of N = prqs,
one only need to know more than αβ log2N LSBs of p, Wang et al. (2019).
All the above mentioned attacks on the prime power moduli N = prqs are
based on the Coppersmith’s method and their lattice construction look simi-
lar and use gcd(r, s) = 1 . The only difference among them depends on the
choice of non-negative integers u, v.

In this paper, we propose a continued fractions method that can lead to
the factorization of the prime power moduli N = prqs in polynomial time for
r, s ≥ 2 and r > s by making good approximations of φ(N). In our approach,
we show that if qs < pr < 2qr and p ≈ N

1
2r and q ≈ 2−

1
2rN

1
2r , then our

approach enables us to get approximation of φ(N) = N −N
r+s−1

2r (2−
s−1
2r +

2−
s
2r )+2−

s−1
2r N

r+s−2
2r which can be used further in getting the right candidate
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k
d as decryption keys from the convergents of the continued fractions expansion
of e
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that leads to the factorization of

the moduli N into prime factors p and q in polynomial time where p and q
are considered to be balanced primes and r, s ≥ 2, r > s. We further give
numerical experiment in order to justify the efficiency of our work.

Lastly, the paper reports generalization of system of equations of the form
ejd−kjφ(Nj) = 1 and ejdj−kφ(Nj) = 1 where j = 1, 2 . . . t. Here, the pa-
per proposes two instances that lead to the factorization of t prime power mod-
uli Nj = prjq

s
j in polynomial time. The first instance shows that if d, kj < Nω

where ω = 1−ηt
3t+1 ,0 < η < 1 and satisfying ejd − kjφ(Nj) = 1, then t prime

factors pj and qj can be found simultaneously through utilization of simulta-
neous Diophantine approximations and LLL algorithm techniques. Likewise,
the second instance proves that if dj , k < Nω where ω = (σ−η)t

3t+1 ,0 < ω, η <
σ < 1 and the relation ejdj−kφ(Nj) = 1 holds, then it is sufficient enough to
factor tmoduliNj = prjq

s
j in polynomial time by utilizing similar technique as

adopted in the first instance. The paper also gives numerical results to justify
how the proposed attacks work.

The rest of the paper is organized as follows. In Section 2, we present
definitions of some basic terms and theorems that could be used in this paper
. In Section 3 , we present our major findings which contain proofs of lemma
and theorems. We also give some numerical results/examples where necessary
to illustrate how our theorems work and finally in Section 4, we conclude the
paper.

2 PRELIMINARIES

In this section, we give basic definitions of some terms and state theorems that
could be used in this paper.

Definition 2.1 (Continued fraction). The continued fraction of a real number
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x is an expression of the form

x = a0 +
1

a1 + 1
a2+

1
a3+...

This expression is often used in the form x = [a0, a1, a2, . . .]. Any rational
number ab can be expressed as a finite continued fraction x = [a0, a1, a2, . . . , am].
For i ≥ 0, we define the ith convergent of the continued fraction [a0, a1, a2, . . .]
to be [a0, a1, a2, . . . , ai]. Each convergent is a rational number.

Theorem 2.1. If p1
q1
, p2q2 , . . . ,

pk
qk
, . . . are convergents of the simple continued

fraction [a1, a2, . . . , ak, . . .], then the numerators and denominators of these
convergents satisfy the following recursive relations:

p1 = a1, p2 = a2a1 + 1, pk = akpk−1 + pk−2,

q1 = 1, q2 = a2, qk = akqk−1 + qk−2,

for k ≥ 3, Wang et al. (2016).

Theorem 2.2. Let α be an arbitrary real number. If the rational number p
q

satisfies ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p
q must be a convergent of α.

Definition 2.2. Let ~b1, . . . , ~bm ∈ Rn. The vectors b′is are said to be linearly
dependent if there exist x1, . . . xm ∈ R, which are not all zero and such that

m∑
i

(xibi = 0).

Otherwise, they are said to be linearly independent.

Definition 2.3. (Lenstra et-al., 1982): Let n be a positive integer. A subsetL of
an n-dimensional real vector spaceRn is called a lattice if there exists a basis
b1 · · · bn onRn such that L =

∑n
i=1Zbi =

∑n
i=1 ribi for ri ∈ Z, 1 ≤ i ≤ n.

In this situation, we say that b1, . . . bn are basis for L or that they span L,
Lenstra and Lovsz (1982).
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Definition 2.4. (LLL Reduction, Nitaj (2013)) Let B = 〈b1 · · · bn〉 be a basis
for a lattice L and let B∗ = 〈b∗1, . . . , b∗n〉 be the associated Gram- Schmidt
orthogonal basis. Let

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

for1 ≤ j < i.

The basis B is said to be LLL reduce if it satisfies the following two conditions:

1. µi,j ≤ 1
2 , for 1 ≤ j < i ≤ n

2. 3
4 ||b
∗
i−1||2 ≤ ||b∗i +µi,i−1b

∗
i−1||2 for 1 ≤ i ≤ n. Equivalently, it can

be written as
||b∗i ||2 ≥ (

3

4
− µ2i,i−1)||b∗i−1||2.

Theorem 2.3. Let L be a lattice basis of dimension n having a basis v1 · · · vn.
The LLL algorithm produces a reduced basis b1, . . . , bn satisfying the follow-
ing condition

||b1|| ≤ ||b2|| ≤ · · · ≤ ||bj || ≤ 2
n(n−1)

4(n+1−j)det(L)
1

n+1−j

for all 1 ≤ j ≤ n, Lenstra and Lovsz (1982).

Theorem 2.4. (Simultaneous Diophantine Approximations) Nitaj et al. (2014).
Given any rational numbers of the form α1, . . . , αn and 0 < ε < 1, there is
a polynomial time algorithm to compute integers p1, . . . , pn and a positive
integer q such that

max
i
|qαi − pi| < ε and q ≤ 2

n(n−3)
4 .3n.ε−n.

3 MAJOR FINDINGS AND RESULTS
DISCUSSION

This section presents the major findings of the paper and discusses the modal-
ities/methodologies adopted in achieving the desired results.
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Lemma 3.1. Let N = prqs be prime power moduli where p and q have the
same bit size for r, s ≥ 2, and r > s. If qs < pr < 2qs, then

2−
1
2rN

1
2r < q < N

1
2r < p < 2

1
2rN

1
2r

and approximation of φ(N) is

φ(N) = N −N
r+s−1

2r (2−
s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r .

Proof. Since N = prqs for r, s ≥ 2, and r > s. Suppose qs < pr < 2qs,
then multiplying by pr gives prqs < p2r < 2prqs which implies N < p2r <

2N , that is N
1
2r < p < 2

1
2rN

1
2r . Also, since N = prqs, then qs = N

pr which

in turn implies 2−
1
2sN

1
2s < q < N

1
2s . Since p and q have same bit size, we

can write q ≈ p ≈ N
1
2r , hence

2−
1
2rN

1
2r < q < N

1
2r < p < 2

1
2rN

1
2r .

Also, taking N = prqs and φ(N) = pr−1qs−1(p − 1)(q − 1) for r, s ≥ 2,
r > s . We compute the approximation of φ(N) as follows:

φ(N) = pr−1qs−1(pq − (p+ q) + 1)

= prqs − (prqs−1 + pr−1qs) + pr−1qs−1

= N − (prqs−1 + pr−1qs) + pr−1qs−1.

Taking p ≈ N
1
2r and q ≈ 2−

1
2rN

1
2r give the following result:

φ(N) = N − (prqs−1 + pr−1qs) + pr−1qs−1

= N −
(

2−
s−1
2r N

r+s−1
2r + 2−

s
2rN

r+s−1
2r

)
+ 2−

s−1
2r N

r+s−2
2r

= N −N
r+s−1

2r (2−
s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r .

This completes the proof. �

Theorem 3.1. Let N = prqs be prime power moduli, where p and q are
prime numbers with same bit size and qs < pr < 2qs for r, s ≥ 2, and
r > s. Also, Let (e,N,M) and (d, p, q, φ(N)) be public and private key
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tuples respectively satisfying ed ≡ 1 (mod φ(N)) where 1 < e < φ(N)

and M = pr−2qs−2(p − 1)(q − 1) . If p ≈ N
1
2r and q ≈ 2−

1
2rN

1
2r , then

d < 1
2

(
N −N

r+s−1
2r (2−(

s−1
2r

) + 2−
s
2r ) + 2−

s−1
2r N

r+s−2
2r

)
can be found from

the convergents of the continued fractions expansion of
e

N−N
r+s−1

2r

(
2−( s−1

2r )+2−
s
2r

)
+2−

s−1
2r N

r+s−2
2r

which lead to the factorization of

the moduli N into prime factors p and q in polynomial time.

Proof. From Lemma 3.1, it was shown that 2−
1
2rN

1
2r < q < N

1
2r < p

where q ≈ 2−
1
2rN

1
2r and p ≈ N

1
2r . Equation ed− kφ(N) = 1 for k ∈ Z can

be rewritten as

ed− k(pr−1qs−1(p− 1)(q − 1)) = 1

ed− k(prqs − (prqs−1 + pr−1qs) + pr−1qs−1) = 1

ed− k(N − (prqs−1 + pr−1qs) + pr−1qs−1) = 1

ed− k
(
N − (2−

s−1
2r N

r+s−1
2r + 2−

s
2rN

r+s−1
2r ) + 2−

s−1
2r N

r+s−2
2r

)
= 1

ed− k
(
N −N

r+s−1
2r (2−

s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r

)
= 1.

Dividing both sides by d
(
N −N

r+s−1
2r (2−

s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r

)
yields

∣∣∣∣∣∣ e

N − N
r+s−1

2r (2
− s−1

2r + 2
− s

2r ) + 2
− s−1

2r N
r+s−2

2r

−
k

d

∣∣∣∣∣∣ =
1

d

(
N − N

r+s−1
2r (2

− s−1
2r + 2

− s
2r ) + 2

− s−1
2r N

r+s−2
2r

) .

Applying Theorem 2.2, we have

1

d
(
N −N

r+s−1
2r (2−

s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r

) <
1

2d2
.

Hence,

d <
1

2

(
N −N

r+s−1
2r (2−

s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r

)
.

Then k
d is among the convergents of the continued fractions expansion of

e

N−N
r+s−1

2r (2−( s−1
2r )+2−

s
2r )+2−

s−1
2r N

r+s−2
2r

. Also, from ed − kφ(N) = 1, we
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have φ(N) = ed−1
k . Next, we find the gcd(φ(N), N) = W and compute

pr−2 = gcd(M,W ). From N = prqs, q can be computed by taking the sth-
root of N

pr . This completes the proof. �

Algorithm 1 Theorem 3.1

1: Initialization: The public keys (N, e,M) satisfying Theorem 3.1.
2: Choose r, s, to be suitable small positive integers where r, s ≥ 2 and
r > s.

3: for any (r, s) do
4: The convergents k

d of the continued fractions expansion of
e

N−N
r+s−1

2r

(
2−( s−1

2r )+2−
s
2r

)
+2−

s−1
2r N

r+s−2
2r

.

5: end for
6: Compute φ(N) := ed−1

k
7: Compute W := gcd(φ(N), N)
8: Compute pr−2 := gcd(M,W )
9: Compute qs := N

pr

10: return prime factors p and q.

Example 3.1. In what follows, we give an illustration of how Theorem 3.1
works in factoring N = p3q2.
Let

N = 2649184212986256752396673637942794513809063

e = 40498785741179336869953752419587879479

M = 28602916653191135231294736

Taking r = 3, s = 2 and the continued fractions expansion of
e

N−N
r+s−1

2r

(
2−( s−1

2r )+2−
s
2r

)
+2−

s−1
2r N

r+s−2
2r

gives the following:

[0, 65413, 1, 11, 16, 14, 2, 3, 1, 1, 1, 1, 16, 1, 2, 1, 1, 5, 1, 5, 1, 3,

1, 3, 3, 1, 2, 1, 5, 21, 1, 3, 2, 1, 121, 1, 3, 2, 2, 1, 1, 34, 1, 6, 1, 1, 4, 1,

2, 2, 16, 2, 1, 1, 1, 5, 2, 1, 3, 1, 5, 65, 2, 4, 14, 2, 1, 6, 15, 1, · · · ]
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which produces the convergent k
d = 12

784967 . Next, using Algorithm 1, we
compute the following:

φ(N) =
ed− 1

k
= 2649184195574693377066415597962219915916016

W = gcd(φ(N), N)

= 28602916841181648257245273

p = gcd(M,W )

= 308822183

q =

√
N

p3

= 299911657.

Finally, prime factors p and q of the prime power moduli N = p3q2 are found
in polynomial time.

3.1 System of Equation Using N −N r+s−1
2r

(
2−( s−1

2r ) + 2−
s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

as Approximation of φ(N)

In this section, we present two instances of factoring t prime power moduli
Nj = prjq

s
j using system of equation of the form ejd − kjφ(Nj) = 1 and

ejdj − kφ(Nj) = 1 for j = 1, . . . , t, r, s ≥ 2 and r > s which lead to the
successful factorization of t prime power moduli Nj = prjq

s
j in polynomial

time.

3.1.1 The Attack on t Prime Power Moduli Nj = pjqj Satisfying System of
Equation ejd− kjφ(Nj) = 1

For t, r, s ≥ 2, letNj = prjq
s
j , where j = 1, . . . , t and r > s. The attack works

for t instances of (Nj , ej) when there exists integers (d, kj) satisfying equation
of the form ejd− kjφ(Nj) = 1. The paper shows that prime factors pj and qj
of t prime power moduli Nj can be simultaneously found in polynomial time

10 International Journal of Cryptology Research
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for N = max{Nj} and d, kj < Nω, for all ω = 1−ηt
3t+1) and 0 < ω, η < 1. In

this case, the prime power moduli instances (Nj , ej) share common decryption
exponent d.

Theorem 3.2. LetNj = prjq
s
j be prime power moduli andMj = pr−2j qs−2j (pj−

1)(qj − 1) be public key for j = 1, . . . , t, r, s ≥ 2 and r > s. Let (ej , Nj ,Mj)
and (d, pj , qj , φ(Nj)) be public and private key tuples respectively such that
1 < ej < φ(Nj) is satisfied. Let N = max{Nj},if there exists positive inte-
gers d, kj < Nω, for all ω = 1−ηt

3t+1 such that key equation ejd− kjφ(Ns) = 1
holds, then t prime power moduli Nj can be simultaneously factored in poly-
nomial time for 0 < ω, η < 1.

Proof. For t, r, s ≥ 2, j = 1, . . . , t and r > s, let Nj = prjq
s
j be t prime

power moduli and Mj = pr−2j qs−2j (pj − 1)(qj − 1) be t public keys. Suppose
N = max{Nj} and kj < Nω for j = 1, · · · , t. Then ejd− kjφ(Nj) = 1 can
be rewritten as

ejd− kj(pr−1j qs−1j (pj − 1)(qj − 1)) = 1

ejd− kj(prjqsj − (prjq
s−1
j + pr−1j qsj ) + pr−1j qs−1j ) = 1

ejd− kj(Nj − (prjq
s−1
j + pr−1j qsj ) + pr−1j qs−1j ) = 1

ejd− kj
(
Nj − (2−

s−1
2r N

r+s−1
2r

j + 2−
s
2rN

r+s−1
2r

j ) + 2−
s−1
2r N

r+s−2
2r

j

)
= 1

ejd− kj
(
Nj −N

r+s−1
2r

j (2−
s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r

j

)
= 1.

Let Λ = N
r+s−1

2r (2−
s−1
2r + 2−

s
2r ), and from Lemma 3.1, it was shown that

N
r+s−1

2r
j (2−(

s−1
2r

) + 2−
s
2r ) = Nj − φ(Nj) + 2−

s−1
2r N

r+s−2
2r

j .

Then we have

ejd− kj
(
Nj − Λ + Λ− (Nj − φ(Nj) + 2−

s−1
2r N

r+s−2
2r

j ) + 2−
s−1
2r N

r+s−2
2r

j

)
= 1.
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The above equation becomes

ejd− kj
(
Nj − Λ + 2−

s−1
2r N

r+s−2
2r

j

)
= 1 + kj

(
Λ−Nj + φ(Nj)− 2−

s−1
2r N

r+s−2
2r

j

)
∣∣∣∣∣∣ ej

Nj − Λ + 2−
s−1
2r N

r+s−2
2r

j

d− kj

∣∣∣∣∣∣ =

∣∣∣∣1 + kj

(
Λ−Nj + φ(Nj)− 2−

s−1
2r N

r+s−2
2r

j

)∣∣∣∣
Nj − Λ + 2−

s−1
2r N

r+s−2
2r

j

Suppose N = max{Nj}, kj < Nω, Nj − Λ + 2−
s−1
2r N

r+s−2
2r

j > 3
4N and∣∣∣∣Λ−Nj + φ(Nj)− 2−

s−1
2r N

r+s−2
2r

j

∣∣∣∣ < N2ω+η, for 0 < ω, η < 1, j = 1, . . . , t.

Plugging the conditions into the above equation yields∣∣∣∣∣∣ ej

Nj − Λ + 2−
s−1
2r N

r+s−2
2r

j

d− kj

∣∣∣∣∣∣ < 1 +Nω(N2ω+η)
3
4N

=
4(1 +N3ω+η)

3N

<
3

2
N3ω+η−1∣∣∣∣∣∣ ej

Nj − Λ + 2−
s−1
2r N

r+s−2
2r

j

d− kj

∣∣∣∣∣∣ < 3

2
N3ω+η−1.

In order to show the existence of the integers d, kj , we let µ = 3
2N

3ω+η−1 for
ω = 1−ηt

3t+1 and 0 < η < 1. Then, we have

Nωµt = Nω

(
3

2
N3ω+η−1

)t
=

(
3

2

)t
Nω+3ωt+ηt−t =

(
3

2

)t
.

Applying Theorem 2.4, we get
(
3
2

)t
< 2

t(t−3)
4 · 3t for t ≥ 2. This implies

Nωµt < 2
t(t−3)

4 · 3t. It follows that if d < Nω then d < 2
t(t−3)

4 · 3t · µ−t for
j = 1, . . . , t. This gives∣∣∣∣∣∣ ej

Nj − Λ + 2−
s−1
2r N

r+s−2
2r

j

d− kj

∣∣∣∣∣∣ < µ.
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The above inequality clearly satisfies the conditions of Theorem 2.4. Next, we
apply LLL algorithm to get the decryption exponent d and t integers kj for
j = 1, . . . , t and make the following computations:

φ(Nj) =
ejd− 1

kj

gcd(φ(Nj), Nj) = Wj

pr−2j = gcd(Mj ,Wj)

qsj =
Nj

prj
.

Finally, the prime factors (pj , qj) of the prime power moduli Nj can be found
simultaneously in polynomial time forNj for j = 1, . . . , t. This completes the
proof. �

Let

V1 =
e1

N1 −N
r+s−1

2r
1

(
2−

s−1
2r + 2−

s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

1

,

V2 =
e2

N2 −N
r+s−1

2r
2

(
2−

s−1
2r + 2−

s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

2

V3 =
e3

N3 −N
r+s−1

2r
3

(
2−

s−1
2r + 2−

s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

3

.

Define
Y = [3t+1 × 2

(t+1)(t−4)
4 × µ−t−1].

Consider the lattice L spanned by the matrix,

X =


1 −[Y V1] −[Y V2] −[Y V3]

0 Y 0 0

0 0 Y 0

0 0 0 Y


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Taking r = 3, s = 2, the matrix X can be used in computing the reduced basis
after applying the LLL algorithm.

Algorithm 2 Theorem 3.2

1: Initialization: The public key tuple (Nj , ej ,Mj , η) satisfying Theorem
3.2.

2: Choose r, s, t ≥ 2, r > s and N = max{Nj} for j = 1, . . . , t.
3: for any (N,ω, η) do
4: µ := 3

2N
3ω+η−1 where ω = 1−ηt

3t+1 and 0 < ω, η < 1

5: Y := [3t+1 × 2
(t+1)(t−4)

4 × µ−t−1] for t ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix X as stated above.
8: Applying the LLL algorithm to L yields the reduced basis matrix Z.
9: for any (X,Z) do

10: R := X−1

11: U = RZ.
12: end for
13: Produce d, kj from U
14: for each triplet (d, kj , ej) do
15: φ(Nj) :=

ejd−1
kj

16: Wj := gcd(φ(Nj), Nj)
17: pr−2j := gcd(Mj ,Wj)

18: qsj :=
Nj

prj
19: end for
20: return the prime factors (pj , qj).

Example 3.2. In what follows, we give a numerical example to illustrate
how Theorem 3.2 works on three prime power moduli and their corresponding
public keys:
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Let

N1 = 39345132652466476630235623254192142252167122018753

N2 = 457825841093783596343584691744461042626807192730793

N3 = 707972226929435312565351753044001373733443099650857

e1 = 11613156158497506562607323874084633164289623211827

e2 = 365462745227043476835475194317972476013176080742419

e3 = 357615161989375978156461618783107233116344144597571

M1 = 1015352031319510018777551546336

M2 = 3425845615368674585464814936096

M3 = 3742369141533037923966369534608.

Observe that max{N1, N2, N3}=

N = 707972226929435312565351753044001373733443099650857.

By taking r, t = 3, s = 2, η = 0.595, and applying Algorithm 2 gives ω =
1−ηt
3t+1 = 0.12150 and µ = 3

2N
3ω+η−1 = 0.01308174268. Applying Theorem

2.4 and using Algorithm 2, for t = 3 we have

Y = [3t+1 · 2
(t+1)(t−4)

4 · µ−t−1] = 1382905852.

Consider the lattice L spanned by the matrix

X =


1 −[Y V1] −[Y V2] −[Y V3]

0 Y 0 0

0 0 Y 0

0 0 0 Y


Therefore, by applying LLL algorithm to L, we obtain reduced basis as fol-
lows:

Z =


1620667 −1080304 −1016246 −1755243

796043 1889924 −8322194 4677223

−5392047 7485796 239422 −1653527

−9114657 558716 712482 7012619


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Next, from Algorithm 2, we compute U = Z ·R,

U =


−1620667 −478358 −1293709 −818641

796043 234961 635447 402102

−5392047 −1591523 −4304240 −2723663

−9114657 −2690293 −7275840 −4604050

 (1)

From the first row of matrix U , we obtain d, k1, k2, k3 as follows:

d = 1620667, k1 = 478358, k2 = 1293709, k3 = 818641.

Using Algorithm 2, we now compute φ(Nj) =
ejd−1
kj

for j = 1, 2, 3.

φ(N1) = 39345132624360162197143402558420931972434391777376

φ(N2) = 457825840988102324767408340476664766792876944698208

φ(N3) = 707972226819614456631048508843756970604900213637616.

Next, from Algorithm 2, we computeWj = gcd(φj , Nj) and pr−2 = gcd(Mj ,Wj)for
j = 1, 2, 3 and r = 3 as follows:

W1 = 1015352032044829811825501298133

W2 = 3425845616159472501271490748491

W3 = 3742369142113555304134728608591

p1 = 26202472313P2 = 25635115217, p3 = 19782311033.

Finally, q can be found by computing qsj =
Nj

prj
for r = 3 and s = 2 which lead

to the simultaneous factorization of three prime power moduli N1, N2, N3 in
polynomial time. That is,

q1 = 1478877157, q2 = 5213114219, q3 = 9562965119.

3.1.2 The Attack on t Prime Power Moduli Nj = prjq
s
j Satisfying System of

Equation ejdj − kφ(Nj) = 1

In this section, we present another attack for the simultaneous factorization of
t prime power moduli Nj = prjq

s
j in polynomial time satisfying t equation
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of the form ejdj − kφ(Nj) = 1 for unknown integers dj , k, for j = 1, . . . , t,
r, s ≥ 2 and r > s. In this case, every pair of the prime power moduli instances
(Nj , ej) has its own unique decryption exponent dj .

Theorem 3.3. Let Nj = prjq
s
s be t prime power moduli, Mj = pr−2j qs−2j (pj −

1)(qj − 1) be t public keys for j = 1, · · · , t, r, s, t ≥ 2 and r > s. Let
(ej , Nj ,Mj) and (dj , pj , qj , φ(Nj)) be public and private key tuples respec-
tively such that 1 < ej < φ(Nj) is satisfied. Let e = min{ej} = Nσ be pub-
lic exponent. If there exists integers dj , k < Nω, for all ω = t(σ−η)

3t+1 such that
ejdj−kφ(Nj) = 1 holds, then prime factors pj and qj of t prime power moduli
Nj can be simultaneously factored in polynomial time for 0 < η, ω < σ < 1.

Proof. For t, r, s ≥ 2, j = 1, . . . , t and r > s, let Nj = prjq
s
j be t prime

power moduli and Mj = pr−2j qs−2j (pj − 1)(qj − 1) be t public keys. Suppose
e = min{ej} = Nσ and dj < Nω for j = 1, · · · , t. Then ejdj − kφ(Nj) = 1
can be rewritten as

ejdj − k(pr−1j qs−1j (pj − 1)(qj − 1)) = 1

ejdj − k(prjq
s
j − (prjq

s−1
j + pr−1j qsj ) + pr−1j qs−1j ) = 1

ejdj − k(Nj − (prjq
s−1
j + pr−1j qsj ) + pr−1j qs−1j ) = 1

ejdj − k
(
Nj − (2−

s−1
2r N

r+s−1
2r

j + 2−
s
2rN

r+s−1
2r

j ) + 2−
s−1
2r N

r+s−2
2r

j

)
= 1

ejdj − k
(
Nj −N

r+s−1
2r

j (2−
s−1
2r + 2−

s
2r ) + 2−

s−1
2r N

r+s−2
2r

j

)
= 1.

Let Λ = N
r+s−1

2r (2−
s−1
2r + 2−

s
2r ), and from Lemma 3.1, it was shown that

N
r+s−1

2r
j (2−(

s−1
2r

) + 2−
s
2r ) = Nj − φ(Nj) + 2−

s−1
2r N

r+s−2
2r

j .

Then we have

ejdj − k
(
Nj − Λ + Λ−

(
Nj − φ(Nj) + 2−

s−1
2r N

r+s−2
2r

j

)
+ 2−

s−1
2r N

r+s−2
2r

j

)
= 1.
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The above equation becomes

ejdj − k
(
Nj − Λ + 2−

s−1
2r N

r+s−2
2r

j

)
= 1 + k

(
Λ−Nj + φ(Nj)− 2−

s−1
2r N

r+s−2
2r

j

)
∣∣∣∣∣∣Nj − Λ + 2−

s−1
2r N

r+s−2
2r

j

ej
k − dj

∣∣∣∣∣∣ =

∣∣∣∣1 + k

(
Λ−Nj + φ(Nj)− 2−

s−1
2r N

r+s−2
2r

j

)∣∣∣∣
ej

.

Suppose N = max{Nj}, dj , k < Nω are positive integers for j = 1, . . . , t,

e = min{ej} = Nσ and
∣∣∣∣Λ−Nj + φ(Nj)− 2−

s−1
2r N

r+s−2
2r

j

∣∣∣∣ < N2ω+η. This

implies ∣∣∣∣∣∣Nj − Λ + 2−
s−1
2r N

r+s−2
2r

j

ej
k − dj

∣∣∣∣∣∣ < 1 +Nω(N2ω+η)

Nσ

<
2

3
N3ω+η−σ.

In order to show the existence of the integers dj , k, we let µ = 3
2N

3ω+η−σ for
ω = t(σ−η)

3t+1 and 0 < η, ω < σ < 1. Then, we have

Nωµt = Nω

(
2

3
N3ω+η−σ

)t
=

(
2

3

)t
Nω+3ωt+ηt−σt =

(
2

3

)t
.

Applying Theorem 2.4, we get
(
2
3

)t
< 2

t(t−3)
4 · 3t for t ≥ 2. This implies

Nωµt < 2
t(t−3)

4 · 3t. It follows that if k < Nω then k < 2
t(t−3)

4 · 3t · µ−t for
j = 1, . . . , t. This gives∣∣∣∣∣∣Nj − Λ + 2−

s−1
2r N

r+s−2
2r

j

ej
k − dj

∣∣∣∣∣∣ < µ.

The above inequality clearly satisfies the conditions of Theorem 2.4. Next,
we apply LLL algorithm to get the decryption exponents dj and integer k for
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j = 1, . . . , t which can be used to make the following computations:

φ(Nj) =
ejdj − 1

k
gcd(φ(Nj), Nj) = Wj

pr−2j = gcd(Mj ,Wj)

qsj =
Nj

prj
.

Finally, the prime factors (pj , qj) of the prime power moduli Nj can be found
simultaneously in polynomial time for j = 1, . . . , t. This completes the proof.
�

Let

V11 =
N1 −N

r+s−1
2r

1

(
2−

s−1
2r + 2−

s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

1

e1
,

V12 =
N2 −N

r+s−1
2r

2

(
2−

s−1
2r + 2−

s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

2

e2

V13 =
N3 −N

r+s−1
2r

3

(
2−

s−1
2r + 2−

s
2r

)
+ 2−

s−1
2r N

r+s−2
2r

3

e3
.

Define
Y1 = [3t+1 × 2

(t+1)(t−4)
4 × µ−t−1].

Consider the lattice L spanned by the matrix,

X1 =


1 −[Y1V11] −[Y1V12] −[Y1V13]

0 Y1 0 0

0 0 Y1 0

0 0 0 Y1


Taking r = 3, s = 2, the matrix X1 can be used in computing the reduced
basis after applying the LLL algorithm.
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Algorithm 3 Theorem 3.3

1: Initialization: The public key tuple (Nj , ej ,Mj , η) satisfying Theorem
3.3.

2: Choose r, s ≥ 2, r > s, e =: min{ej} := Nσ and N = max{Nj} for
j = 1, . . . , t.

3: for any (N,ω, η, σ) do
4: µ := 2

3N
3ω+η−σ for ω = t(σ−η)

3t+1 and 0 < ω, η < σ < 1

5: Y1 := [3t+1 × 2
(t+1)(t−4)

4 × µ−t−1] for t ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix X1 as stated above.
8: Applying the LLL algorithm to L yields the reduced basis matrix Z1.
9: for any (X1, Z1) do

10: R1 := X−11

11: U1 = R1Z1.
12: end for
13: Produce dj , k from U1

14: for each triplet (dj , k, ej) do
15: φ(Nj) :=

ejdj−1
k

16: Wj := gcd(φ(Nj), Nj)
17: pr−2j := gcd(Mj ,Wj)

18: qsj :=
Nj

prj
19: end for
20: return the prime factors (pj , qj).
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Example 3.3. In what follows, we give a numerical example to illustrate
how Theorem 3.3 works on three prime power moduli and their corresponding
public keys: Let

N1 = 2790456916996092208017072372472705922274621623783630114674768018070410951

N2 = 89788926108648210387412483587040086587553900773226551662902130464027865379

N3 = 1469889806935193652496065998302040756392356744522935970878350078956729637

e1 = 1153990559282340762451170346586697592025886173858233752582223038487250964

e2 = 20423336053781148442198920055841911970084285393162634991121379188855358751

e3 = 348814513827450361866943977739701818744104747623482255293363469341504620

M1 = 51950995612691556747076919716348659444519600

M2 = 247542056061849796104427546447062173228796596

M3 = 38743677697757814040378727387554499123902632.

Observe that max{N1, N2, N3}=
N = 89788926108648210387412483587040086587553900773226551662902130464027865379,

and ej = min{e1, e2, e3} =

348814513827450361866943977739701818744104747623482255293363469341504620

with ej = min{e1, e2, e3} = Nσ for σ = 0.9674033378 and η = 0.545.
Also, from Algorithm 3, ω = t(σ−η)

3t+1 = 0.1267210013 and µ := 2
3N

3ω+η−σ =
0.0005013025547. Applying Theorem 2.4 and using Algorithm 3, for t = 3
we have

Y1 = [3t+1 · 2
(t+1)(t−4)

4 · µ−t−1] = 641291305500000.

Consider the lattice L spanned by the matrix

X1 =


1 −[Y1V11] −[Y1V12] −[Y1V13]

0 Y1 0 0

0 0 Y1 0

0 0 0 Y1


Therefore, by applying LLL algorithm to L, we obtain reduced basis as fol-
lows:

Z1 =


−10689 320730 103584 815229

−826666802866 3326275265620 −5607977569504 −606915904374

−718775031721 6928397172970 1265873221376 −2896060020219

−6203162212727 −1716050241610 117602127712 578857273947


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Next, from Algorithm 3 we compute U1 = Z1 ·R1,

U1 =


−10689 −25847 −46993 −45043

−826666802866 −1998957512740 −3634348682485 −3483539414491

−718775031721 −1738065136579 −3160014507032 −3028887992685

−6203162212727 −14999825401100 −27271512944399 −26139866736633


(2)

From the first row of matrix U1 we obtain k, d1, d2, d3 as follows:

k = 10689, d1 = 25847, d2 = 46993, k3 = 45043.

Using Algorithm 3, we now compute φ(Nj) =
ejdj−1

k for j = 1, 2, 3.

φ(N1) = 2790456916996039076347216760054857578921609124867973412198776

206921131600

φ(N2) = 8978892610864790988345531389130685463655822092626922126838497

2609400306276

φ(N3) = 1469889806935152647541655682414574704994920960539293781006546

051973935128.

Next, from Algorithm 3, we computeWj = gcd(φj , Nj) and pr−2j = gcd(Mj ,Wj)
for j = 1, 2, 3 and r = 3 as follows:

W1 = 51950995612692545919542099839032703063467881

W2 = 247542056061850624573712528172703509876452159

W3 = 38743677697758894857954431972139318503366403

p1 = 967191404644711P2 = 682456870518539, p3 = 1021214348494357.

Finally, q can be found by computing qsj =
Nj

prj
for r = 3, j = 1, 2, 3 and s = 2

which leads to the simultaneous factorization of three prime power moduli
N1, N2, N3 in polynomial time. That is,

q1 = 55535286711161, q2 = 531494253385079, q3 = 37150702190747.

4 CONCLUSION

In this paper, we presented the polynomial time factorization of the prime
power moduli N = prqs using continued fractions method. Our approach
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proved that the decryption exponent d can be found from the convergents of the
continued fractions expansion of e

N−N
r+s−1

2r

(
2−( s−1

2r )+2−
s
2r

)
+2−

s−1
2r N

r+s−2
2r

ef-

ficiently, whereN−N
r+s−1

2r

(
2−(

s−1
2r

) + 2−
s
2r

)
+2−

s−1
2r N

r+s−2
2r is considered

to be a good approximation of φ(N). The paper also utilizes the combination
of LLL algorithm and simultaneous Diophantine approximations techniques
for the successful factorization t prime power moduliNj = prjq

s
j into its prime

factors of pj and qj using generalized system of equation which has not been
reported by previous research works based on the available literature within
our reach.
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