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ABSTRACT

This paper proposes new cryptanalysis attacks on RSA modulus
N = pq with generalized method of small prime difference using con-
tinued fraction technique which result to a new short decryption expo-

nent bound d <
√

aj+bi(bi−2)
2bi N

3
4−γ . The paper also shows that if

|bip− ajq| < Nγ , then RSA modulus N = pq can be factored in poly-
nomial time from the convergents of continued fraction expansions of

e

N−
⌈

aj+bi

a
j
2 b

i
2

√
N

⌉
+1

where a, b, i and j are small positive integers. The

paper also reports t instances of factoring RSA moduli Ns = psqs with
public key pair (Ns, es) where three new attacks using key equations of
the form esd− ksφ(Ns) = 1, esds − kφ(Ns) = 1, esd− kφ(Ns) = zs
and esds−kφ(Ns) = zs which lead to successful factorization of t RSA
moduli Ns = psqs in polynomial time using simultaneous Diophantine
approximation and lattice basis reduction techniques for unknown posi-
tive integers d, ds, k, ks and zs are being reported . The paper improves
short decryption exponent bounds of some reported researches.
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1 INTRODUCTION

The most widely reported and widely used public key cryptosystem in today’s
digital world is RSA cryptosystem. It was invented by three gentlemen Rivest,
Shamir and Adleman in the year 1977, as reported in Rivest and Adleman
(1978). The RSA cryptosystem can be used for message encryption which
helps us safeguard our information from being tempered by unauthorized par-
ties (eavesdroppers) and also provides authentication between entities involved
in communication through digital signature.

The RSA key generation involves random selection of two distinct random
large prime numbers such that their product is represented by N = pq and
called the RSA modulus. The Euler totient function φ(N) is computed as
φ(N) = (p−1)(q−1) where an integer e < φ(N) such that gcd(e, φ(N)) = 1.
Also, a short decryption exponent d such that the relation ed ≡ 1 mod φ(N)
is satisfied is to be considered. The pairs (e,N) and (d, p, q) are called the
public and private keys respectively.

The encryption function is to be computed by choosing a message M ∈
(1, N − 1) and computing ciphertext C = M e (mod N ). Plaintext can be
recovered by computing the decryption exponent from the equation M = Cd

(mod N). The primes p and q in most cases are consider to have same bit size.

The security of RSA depends on the failure of an adversary to compute
the secret key d from the public keys(e,N).The problem of computing d from
(e,N) is equivalent to the problem of factoring RSA modulusN into its primes
factors of p and q as it was reported by Bach and Shallit (1986). It is there-
fore recommended for RSA users to generate primes p and q in such a way
that the problem of factoring N = pq is computationally infeasible for an ad-
versary. Choosing p and q as strong primes has been recommended as a way
of maximizing the difficulty of factoring RSA modulus N . The security of
RSA can also be associated with the problem of solving RSA key equation
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ed ≡ 1 (mod φ(N)) where the parameters d, φ(N) are unknown and (e,N)
are public key pair.

The wisdom behind using short decryption is to speed up decryption and
signature verification processes. But this suffered a setback in 1990 when
Wiener showed that RSA modulus N = pq can be broken if the short de-
cryption exponent is d < 1

3N
0.25. He found d from the convergents of the

continued fraction expansion of e
N where N was considered as a good approx-

imation of φ(N) which led to the factorization of RSA modulus N into its two
prime factors in polynomial time, as reported by Wiener (1990). Since then,
there have been improvement on the bound d. Boneh and Durfee (1999) used
a heuristic approach and applied Coppersmith method which enabled them to
found an improved bound of d < N0.292 and they conjectured that the better
bound for a short decryption exponent attack for total break of RSA modulus
N = pq is d < N0.5, as reported by Boneh and Durfee (1999). Furthermore,
using small prime difference of |p − q| and taking N − 2N

1
2 + 1 < N δ as

an approximation of φ(N), de Weger (2002) proved that, the short decryption
d can be found from the convergents of the continued fraction expansion of

e

N−2N
1
2+1

. He showed that RSA modulus N = pq is insecure if the short

secret exponent d < N δ where δ < 3
4 − β for β = [14 ,

1
2 ] and p and q are

balanced primes satisfying q < p < 2p, as reported by de Weger (2002).

In another development, Maitra and Sarkar (2008), reported an improved
bound of de Weger where they proved that if the prime difference |2q − p| <
N δ for β = [14 ,

1
2 ] where p and q are balanced primes, then the short secret

exponent d can be found from the convergents of continued fraction expansion
of e

N− 3√
2
N

1
2+1

where N − 3√
2
N

1
2 + 1 was taken as a good approximation of

φ(N) which led to the factorization of N into prime factors p and q in poly-
nomial time, as reported by Maitra and Sarkar (2008). Chen et al. (2009) also
reported a generalized de Weger method of factoring RSA modulus N = pq.
They used prime difference approach by choosing some small integers a, b
and showed that if |aq − bp| < Nγ where γ = 1

5 , then d can be found from
the convergents of continued fraction expansion of e

N− a+b√
ab

√
N+1

. They proved

that if d < N
3
4
−γ , then RSA modulus N = pq can be factored efficiently pro-

vided p < q < 2q and a > b, as reported by Chen C.Y. Hsueh and Lin (2009).
Blömer and May (2004) also reported an attack on RSA modulus N = pq us-

International Journal of Cryptology Research 39



Saidu Isah Abubakar, Muhammad Rezal Kamil Ariffin & Muhammad Asyraf Asbullah

ing generalized key equation of the form ex− yφ(N) = z where they showed
that RSA modulus is insecure if x < 1

3N
1
4 and |z| < exN

−3
4 . They employed

continued fraction and lattice basis reduction methods to carryout their attack
which yielded the prime factors p and q efficiently, as reported by Blömer and
May (2004). Also, Nitaj et al. (2014) reported some cryptanalysis attacks on
factoring j RSA modulus Ni = piqi where i = 1, 2 . . . , j for j ≥ 2. In the
first case, they proved that if the equation eix − yiφ(Ni) is satisfied where
x < N δ, yi < N δ, |zi| < pi−qi

3(pi+qi)
yiN

1
4 for δ = k

2(k+1) , N = min{Ni} for
unknown parameters x, y, z, then k RSA moduli Ni can be factored simul-
taneously. In their second attack, they also proved that k instances of RSA
public key pair (Ni, ei) satisfying eixi − yφ(Ni) = zi for unknown parame-
ters xi, y, and zi where x < N δ, yi < N δ, and |zi| < pi−qi

3(pi+qi)
yiN

1
4 for all

δ = k(2α−1)
2(k+1) , N = min{Ni} and min{ei} = Nα can be factored efficiently.

They applied simultaneous Diophantine approximations and lattice basis re-
duction techniques and finally used Coppersmith’s method to compute prime
factors pi and qi of RSA moduli Ni in polynomial time, as reported by Nitaj
et al. (2014).

The contributions of this paper is reported into two parts. The first part
reports the use of generalized prime difference technique to mount an attack
on RSA modulus N = pq which make it insecure if the decryption exponent

d <
√

aj+bi(bi−2)
2bi

N
3
4
−γ . The decryption exponent d can be recovered from

the convergent of continued fraction expansion of e

N−
⌈
aj+bi

a
j
2 b

i
2

√
N

⌉
+1

. The sec-

ond part of the paper reports four new cryptanalysis attacks on t instances of
factoring RSA moduliNs = psqs for a given public key pair (Ns, es). We con-
struct system of equations of the form esd−ksφ(Ns) = 1, esds−kφ(Ns) = 1,

esd− kφ(Ns) = zs and esds − kφ(Ns) = zs by using N −
⌈
aj+bi

a
j
2 b

i
2

√
N

⌉
+ 1

as good approximation of φ(N) to simultaneously factor t instances of RSA
moduli Ns = psqs in polynomial time.The paper shows new bounds that are
considered to be larger (bounds) over some results as reported by researchers.

The rest of the paper is organized as follows. In Section 2, we present
definitions of some basic terms and theorems that form the basis of this pa-
per . In Section 3 , we present our main findings which contains proofs of
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our main results with lemmas and theorems. We also give some numerical
results/examples to illustrate how our theorems work and finally in Section 4,
we conclude the paper.

2 PRELIMINARIES

In this section, we give some basic definitions of some terms and state theo-
rems that will be used in this paper.

Definition 2.1 (Continued fraction). The continued fraction of a real number
x is an expression of the form

x = a0 +
1

a1 +
1

a2+
1

a3+...

This expression is often used in the form x = [a0, a1, a2, . . .]. Any rational
number ab can be expressed as a finite continued fraction x = [a0, a1, a2, . . . , am].
For i ≥ 0, we define the ith convergent of the continued fraction [a0, a1, a2, . . .]
to be [a0, a1, a2, . . . , ai]. Each convergent is a rational number.

Definition 2.2. Let ~b1, . . . , ~bm ∈ Rn. The vectors b′is are said to be linearly
dependent if there exist x1, . . . xm ∈ R, which are not all zero and such that

m∑
i

(xibi = 0).

Otherwise, they are said to be linearly independent.

Definition 2.3. (Lenstra et-al., 1982): Let n be a positive integer. A subsetL of
an n-dimensional real vector spaceRn is called a lattice if there exists a basis
b1 · · · bn onRn such that L =

∑n
i=1Zbi =

∑n
i=1 ribi for ri ∈ Z, 1 ≤ i ≤ n.

In this situation, we say that b1, . . . bn are basis for L or that they span L,
Lenstra and Lovsz (1982).

Definition 2.4. (LLL Reduction, Nitaj (2013)) Let B = 〈b1 · · · bn〉 be a basis
for a lattice L and let B∗ = 〈b∗1, . . . , b∗n〉 be the associated Gram- Schmidt
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orthogonal basis. Let

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

for1 ≤ j < i.

The basis B is said to be LLL reduce if it satisfies the following two conditions:

1. µi,j ≤ 1
2 , for 1 ≤ j < i ≤ n

2. 3
4 ||b
∗
i−1||2 ≤ ||b∗i +µi,i−1b∗i−1||2 for 1 ≤ i ≤ n. Equivalently, it can

be written as
||b∗i ||2 ≥ (

3

4
− µ2i,i−1)||b∗i−1||2.

Theorem 2.1. If p1
q1
, p2q2 , . . . ,

pk
qk
, . . . are convergents of the simple continued

fraction [a1, a2, . . . , ak, . . .], then the numerators and denominators of these
convergents satisfy the following recursive relations:

p1 = a1, p2 = a2a1 + 1, pk = akpk−1 + pk−2,

q1 = 1, q2 = a2, qk = akqk−1 + qk−2,

for k ≥ 3, Wang et al. (2016).

Theorem 2.2. Let α be an arbitrary real number. If the rational number p
q

satisfies ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
,

then p
q must be a convergent of α.

Theorem 2.3. Let L be a lattice basis of dimension n having a basis v1 · · · vn.
The LLL algorithm produces a reduced basis b1, . . . , bn satisfying the follow-
ing condition

||b1|| ≤ ||b2|| ≤ · · · ≤ ||bj || ≤ 2
n(n−1)

4(n+1−j)det(L)
1

n+1−j

for all 1 ≤ j ≤ n, Lenstra and Lovsz (1982)

Theorem 2.4. (Simultaneous Diophantine Approximations) Nitaj et al. (2014).
Given any rational numbers of the form α1, . . . , αn and 0 < ε < 1,there is
a polynomial time algorithm to compute integers p1, . . . , pn and a positive
integer q such that

max
i
|qαi − pi| < ε and q ≤ 2

n(n−3)
4 .3n.ε−n.
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3 FINDINGS AND DISCUSSIONS

In this section, we present the major findings of the paper and discuss the
techniques employed in achieving the results. This paper is divided into two
parts. In the first part, we propose a new short decryption exponent crypt-
analytic attack on factoring RSA modulus N = pq using continued fraction
method which yields an improved bound and in the second part of the paper,
we present four cryptanalysis attacks of factoring t RSA moduli Ns = psqs
for s = 1, . . . , t efficiently and report some improvements on the decryption
exponent over reported attacks .

3.1 Cryptanalytic Attacks Through Analyzing Small Prime Difference Satis-
fying |bip− ajq| < Nγ

In this section, we show that if the decryption exponent d <
√

aj+bi(bi−2)
2bi

N
3
4
−γ ,

then RSA modulus N = pq can be factored efficiently from the conver-
gent of the continued fraction expansion of e

N−
⌈
aj+bi

a
j
2 b

i
2

√
N

⌉
+1

. The section also

presents numerical example to illustrates how the attack works for i > j .

Lemma 3.1. Let p and q be balanced prime numbers where q < p < 2q
and N = pq. If a, b, i and j are small positive integers less than logN and
(bip − ajq)(ajp − biq) < 0 such that bi

aj
< q

p for a > b, 2 < j < i and

bip− ajq 6= 0, e < φ(N), then φ(N) > N − aj+bi

a
j
2 b

i
2

√
N + 1.

Proof. Suppose (bip− ajq)(ajp− biq) < 0, then we have

ajbjp2 − a2jpq − b2jpq + ajbjq2 < 0

ajbi(p2 + q2) < (a2j + b2i)pq.
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Adding 2ajbipq to both sides gives

ajbi(p+ q)2 < (aj + bi)2pq

p+ q <
aj + bi

a
j
2 b

i
2

√
N.

Then

φ(N) > N − aj + bi

a
j
2 b

i
2

√
N + 1.

�

Lemma 3.2. Let p and q be balanced prime numbers where q < p < 2q and
N = pq. If(

aj + bi

a
j
2 b

i
2

√
N − (p+ q)

)(
aj + bi

a
j
2 b

i
2

√
N + (p+ q)

)
− (bip− ajq)2 < 0

then
aj + bi

a
j
2 b

i
2

√
N − (p+ q) <

(bip− ajq)2(
aj+bi

a
j
2 b

i
2

+ 2

)√
N

for suitably small positive integers a > b, 2 < j < i.

Proof. Observe(
aj + bi

a
j
2 b

i
2

√
N − (p+ q)

)(
aj + bi

a
j
2 b

i
2

√
N + (p+ q)

)
− (bip− ajq)2 < 0

Then(
aj + bi

a
j
2 b

i
2

√
N − (p+ q)

)(
aj + bi

a
j
2 b

i
2

√
N + (p+ q)

)
< (bip− ajq)2

aj + bi

a
j
2 b

i
2

√
N − (p+ q) <

(bip− ajq)2
aj+bi

a
j
2 b

i
2

√
N + (p+ q)

aj + bi

a
j
2 b

i
2

√
N − (p+ q) <

(bip− ajq)2(
aj+bi

a
j
2 b

i
2

+ 2

)√
N

.

�

44 International Journal of Cryptology Research



A New Short Decryption Exponent Cryptanalysis Attacks of Factoring RSA Modulus N = pq

Theorem 3.1. Let p and q be balanced prime numbers where q < p < 2q
and N = pq. Let (e,N) be public key pair and (d, p, q) be private key
tuple. If |bip − ajq| < Nγ , and bi

aj
< q

p , then the decryption exponent

d <
√

aj+bi(bi−2)
2bi

N
3
4
−γ can be found from the convergent of the continued

fraction expansion of e

N−d aj+bi

a
j
2 b

i
2

√
Ne+1

which leads to the factorization of N in

polynomial time where a > b, i > j are suitably small positive integers and
1
4 ≤ γ ≤

1
2 .

Proof. From Lemma 3.2, it was shown that:

aj + bi

a
j
2 b

i
2

√
N − (p+ q) <

(bip− ajq)2(
aj+bi

a
j
2 b

i
2

+ 2

)√
N

.

Also, suppose |bip− ajq| < Nγ , then we have:

aj + bi

a
j
2 b

i
2

√
N − (N − φ(N) + 1) <

N2γ(
aj+bi

a
j
2 b

i
2

+ 2

)√
N

.
(1)

Using RSA key equation ed− kφ(N) = 1, for some k ∈ Z , we get∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ = 1

dφ(N)
.

Also, taking N − aj+bi

a
j
2 b

i
2

√
N + 1 from Lemma 3.1 as approximation of φ(N),

this becomes:∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ =
∣∣∣∣∣∣ e

N − aj+bi

a
j
2 b

i
2

√
N + 1

− k

d

∣∣∣∣∣∣
=

∣∣∣∣∣∣ e

N − aj+bi

a
j
2 b

i
2

√
N + 1

− e

φ(N)
+

e

φ(N)
− k

d

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ e

N − aj+bi

a
j
2 b

i
2

√
N + 1

− e

φ(N)

∣∣∣∣∣∣+
∣∣∣∣ e

φ(N)
− k

d

∣∣∣∣ .
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But e < φ(N) and aj+bi

a
j
2 b

i
2

√
N − (N − φ(N) + 1) < N2γ(

aj+bi

a
j
2 b

i
2

+2

)
√
N

. This

implies:∣∣∣∣∣∣ e

N − aj+bi

a
j
2 b

i
2

√
N + 1

− k

d

∣∣∣∣∣∣ < N2γ

(N − aj+bi

a
j
2 b

i
2

√
N + 1)(a

j+bi

a
j
2 b

i
2

+ 2)
√
N

+
1

dφ(N)
.

(2)
Now, assuming that N − aj+bi

a
j
2 b

i
2

√
N +1 > aj+bi

2aj
N , φ(N) > bi

aj
N , N > ajbid

and a, b are small positive integers. Plugging the conditions into inequality (2),
yields:∣∣∣∣∣∣ e

N − aj+bi

a
j
2 b

i
2

√
N + 1

− k

d

∣∣∣∣∣∣ < N2γ

(a
j+bi

2aj
N)(a

j+bi

a
j
2 b

i
2

+ 2)
√
N

+
1

bid2

<
1

aj + bi
N2γ− 3

2 +
1

bid2
.

Suppose d <
√

aj+bi(bi−2)
2bi

N
3
4
−γ , then

1

aj + bi
N2γ− 3

2 +
1

bid2
<

1

2d2
.

Hence, we have ∣∣∣∣∣∣ e

N − aj+bi

a
j
2 b

i
2

√
N + 1

− k

d

∣∣∣∣∣∣ <
1

2d2
.

This shows that Theorem 3.1 produces k
d as the convergent of the continued

fraction expansion of e

N− aj+bi

a
j
2 b

i
2

√
N+1

. This terminates the proof. �
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Author(s) Bounds for d
Assumed Interval

for γ
Wiener (1990) d < 1

3N
1
4 Not applicable

de Weger (2002) d < 1
8N

3
4
−γ 0.25 ≤ γ ≤ 0.5

Maitra and Sarkar (2008) d < N
1
4 Not applicable

Chen C.Y. Hsueh and Lin (2009) d < N
3
4
−γ 0.25 ≤ γ ≤ 0.5

Nitaj (2013) d <

√
6
√
2

6 N
1
4 Not applicable

Asbullah (2015) d < 1
2N

1
4 Not applicable

Our result of Theorem 3.1 d <
√

aj+bi(bi−2)
2bi

N
3
4
−γ 0.25 ≤ γ ≤ 0.5

Table 1: Comparison of the bounds on d for RSA modulo N = pq

From Table 1 one can observe that our bound of Theorem 3.1 is an im-
provement of the above mentioned bounds.

Example 3.1. This example gives an illustration of how Theorem 3.1 works in
factoring N = pq for γ = 1

2 . Let

N = 685483800920548702890289

e = 617682506652768172655511.

Taking a = 3, b = 2, j = 3, i = 4 and the continued fraction expansion of
e

N−
⌈
aj+bi

a
j
2 b

i
2

√
N

⌉
+1

gives the following:

[0, 1, 9, 9, 13, 3, 1, 9, 6, 1, 1, 238, 122, 1, 40, 2, 1, 2, 10,

2, 1, 14, 1, 4, 4, 3, 39, 2, 1, 1, 1, 1, 4, 5, 1, 2, 1, 3, 1, 3, 3]

Also taking the convergents of continued fraction expansion of e

N−
⌈
aj+bi

a
j
2 b

i
2

√
N

⌉
+1

gives the following:[
0, 1,

9

10
,
82

91
,
1075

1193
,
3307

3670
,
4382

4863
,
42745

4737
,
260852

289485
,
303597

336922
,
564449

626407
,
134642459

149421788
, · · ·

]
.
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Taking k
d = 564449

626407 we compute

1 + kφ(N)

d
= 617682506652768172655511

φ(N) = 685483800918843957077824

N − φ(N) + 1 = 1704745812466.

Finally, solving the quadratic equation x2− (N − φ(N) + 1)x+N = 0 leads
to the factorization of N . This successfully reveals prime factors p and q as
p = 1054995141833 and q = 649750670633.

Also, taking the value of γ = 0.5 this shows that the bound d <
√

aj+bi(bi−2)
2bi

N0.25,
that is 626407 < 1054771.867. Also, the result shows that the short decryp-
tion exponent found is greater than Wiener’s original bound d < 1

3N
0.25, as re-

ported in Wiener (1990). This can be seen from 1
3N

0.25 < d <
√

aj+bi(bi−2)
2bi

N0.25,
numerically as follows

303303.9347 < 626407 < 1054771.867.

The result also shows that the secret exponent found is greater than Asbullah
and Ariffin’s bound d < 1

2N
0.25, as reported in Asbullah (2015). This can be

seen from 1
2N

0.25 < d <
√

aj+bi(bi−2)
2bi

N0.25, numerically as follows

454955.9020 < 626407 < 1054771.867.

3.2 System of Equation UsingN − aj+bi

a
i
2 b

j
2

√
N +1 as an Approximation of φ(N)

This section presents four cryptanalytic attacks on t RSA moduli Ns = psqs
using system of equations of the form esd−ksφ(Ns) = 1, esds−kφ(Ns) = 1,
esd − ksφ(Ns) = z1 and esds − kφ(Ns) = z1 for s = 1, . . . , t, j = 3, . . . , i
which successfully factor t RSA moduli in polynomial time.

3.2.1 The Attack on t RSA Moduli Ns = psqs Satisfying esd− ksφ(Ns) = 1

Taking t ≥ 2, letNs = psqs, for s = 1, . . . , t. The attack works for t instances
of (Ns, es) when there exists integer d and t integers ks satisfying equation
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esd − ksφ(Ns) = 1. It shows that prime factors ps and qs of t RSA moduli
Ns for s = 1, . . . , t,, j = 3, . . . , i can be found efficiently for N = max{Ns}
and d, ks < Nγ , for all γ = 3t

2(3t+1) for 1
4 ≤ γ ≤ 1

2 . In this case, the RSA
instances shared common decryption exponent d.

Theorem 3.2. Let Ns = psqs be RSA moduli for j = 3 . . . , i, s = 1 . . . t and
t ≥ 2. Let (es, Ns) be public key pair and (d,Ns) be private key pair such
that es < φ(Ns) and esd ≡ 1 (mod φ(Ns)) is satisfied. Let N = max{Ns},
if there exists positive integers d, ks < Nγ , for all γ = 3t

2(3t+1) such that
esd− ksφ(Ns) = 1 holds, then t RSA moduli Ns can be successfully factored
in polynomial time for 1

4 ≤ γ ≤
1
2 ..

Proof. For t ≥ 2, j = 3, . . . , i and letNs = psqs, 1 ≤ s ≤ t be tmoduli. Let
N = max{Ns} and suppose that ks < Nγ for s = 1, · · · , t. Then equation
esd− ksφ(Ns) = 1 can be rewritten as

esd− ks(Ns − (ps + qs) + 1) = 1

esd− ks
(
Ns −

aj + bi

a
j
2 b

i
2

√
Ns +

aj + bi

a
j
2 b

i
2

√
Ns − (Ns − φ(Ns) + 1) + 1

)
= 1.

Then, we get

∣∣∣∣∣∣ es

Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

d− ks

∣∣∣∣∣∣ =
∣∣∣∣1 + ks

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

.

(3)
Taking N = max{Ns} and suppose that ks < Nγ , for s = 1, . . . , t. From
Theorem 3.1, it was shown that

∣∣∣∣aj + bi

a
j
2 b

i
2

√
Ns + φ(Ns)−Ns − 1

∣∣∣∣ <
N2γ(

aj+bi

a
j
2 b

i
2

+ 2

)√
N

Ns −
aj + bi

a
j
2 b

i
2

√
Ni + 1 >

aj + bi

2aj
N.
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Plugging the conditions into equation (3) yields

∣∣∣∣1 + ks

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

<

1 +Nγ

 N2γ

( a
j+bi

a
j
2 b

i
2

+2)
√
N


aj+bi

2aj
N

<
2aj +N3γ− 1

2

N

<

√
aj

bi
N3γ− 3

2∣∣∣∣∣∣ es

Ns − aJ+bi

a
j
2 b

i
2

√
Ns + 1

d− ks

∣∣∣∣∣∣ <
√
aj

bi
N3γ− 3

2 .

Hence, to show the existence of the integer d and t integers ks, let ε =√
aj

bi
N3γ− 3

2 , with γ = 3t
2(3t+1) . Then it yields

Nγεt = Nγ

(√
aj

bi
N3γ− 3

2

)t
=

(
aj

bi

) t
2

Nγ+3γt− 3t
2 =

(
aj

bi

) t
2

.

Following Theorem 2.4, we get
(
aj

bi

) t
2
< 2

t(t−3)
4 · 3t for t ≥ 2, which yields

Nγεt < 2
t(t−3)

4 · 3t. It follows that if d < Nγ then d < 2
t(t−3)

4 · 3t · ε−t for
s = 1, . . . , t, gives ∣∣∣∣∣∣ es

Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

d− ks

∣∣∣∣∣∣ < ε.

This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal the
private key d and t integers ks for s = 1, . . . , t. Next, from esd−ksφ(Ns) = 1,
we make the following computations :

φ(Ns) =
esd− 1

ks
ps + qs = Ns − φ(Ns) + 1.
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Finally, by finding the roots of x2 − (Ns − φ(Ns) + 1)x+Ns = 0, the prime
factors ps and qs can be revealed which lead to the factorization of t RSA
moduli Ns for s = 1, . . . , t in polynomial time. �

Let

X1 =
e1

N1 − aj+bi

a
j
2 b

i
2

√
N1 + 1

,

X2 =
e2

N2 − aj+bi

a
j
2 b

i
2

√
N2 + 1

X3 =
e3

N3 − aj+bi

a
j
2 b

i
2

√
N3 + 1

.

Define
T = [3t+1 × 2

(t+1)(t−4)
4 × ε−t−1].

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T ×X3]

0 T 0 0

0 0 T 0

0 0 0 T


Taking suitable small positive integers a and b, the matrix M can be used in
computing the reduced basis after applying the LLL algorithm.
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Algorithm 1 Theorem 3.2

1: Initialization: The public key tuple (Ns, es, γ) satisfying Theorem 3.2.
2: Choose a, b, i, j and t to be suitable small positive integers and N =

max{Ns} for s = 1, . . . , t.
3: for any (a, b, j, i, t, N, γ) do
4: ε :=

√
aj

bi
N3γ− 3

2

5: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix M as stated above.
8: Applying the LLL algorithm to L yields the reduced basis matrix K.
9: for any (M,K) do

10: J :=M−1

11: Q = JK.
12: end for
13: Produce d, ks from Q
14: for each triplet (d, ks, es) do
15: φ(Ns) :=

esd−1
ks

16: Ws := Ns − φ(Ns) + 1.
17: end for
18: Solve the quadratic equation x2 −Wsx+Ns = 0
19: return the prime factors (ps, qs).

Example 3.2. In what follows, we give a numerical example to illustrate
how Theorem 3.2 works on three RSA moduli and their corresponding public
exponents:
Let

N1 = 313296722483694348869118218800108664339857

N2 = 243057446386924151991041341567942883769227

N3 = 627593708207414307209298238491831299270237

e1 = 7496219811253679305916161289949281265653

e2 = 167584613561508555407564322088296772905073

e3 = 536037461585975554491800236835143553077957.

Observe that max{N1, N2, N3}=

N = 627593708207414307209298238491831299270237.
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By using a = 3, b = 2, j = 3, i = 4 and since t = 3, we have from Algorithm

1, γ = 3t
2(3t+1) = 0.45 and ε =

√
aj

bi
N3γ− 3

2 = 0.0000006981843403.

Applying Theorem 2.4 and using Algorithm 1, for n = t = 3 we compute

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 170441209800000000000000000.

Consider the lattice L spanned by the matrix

M =


1 −[TX1] −[TX2] −[TX3]

0 T 0 0

0 0 T 0

0 0 0 T



Therefore, by applying LLL algorithm to L, we obtain the reduced basis
with the following matrix:

K =

(
−1050590551029817 −980192508667440107 −80803053781452532 −10936250900571415826

27694966597117771359 36467682502142580189 −45378575342858626836 −3994752216699011298

−21764529693552634884 −78590202542256797964 −37931866156286954064 −37931866156286954064

−68906978215743699234 10740574764790428186 −62239616909978186664 124439360191399548

)

Next, from Algorithm 1 we compute Q = K · J ,

Q =


−1050590551029817 −25137376604875 −724367075038833 −897325586243953

27694966597117771359 662654737117871222 19095281151717704826 23654697934799994364

−21764529693552634884 −520757757623588053 −15006330199963036526 −18589420347867530064

−68906978215743699234 −1648730478696173557 −47510370439726361420 −58854512410312596083


(4)

From the first row of matrix Q we obtain d, k1, k2 and k3 as follows:

d = 1050590551029817, k1 = 25137376604875

k2 = 724367075038833, k3 = 897325586243953.

Using Algorithm 1, we now compute φ(Ns) =
esd−1
ks

for s = 1, 2, 3.

φ(N1) = 313296722483694348867888562983387518790436

φ(N2) = 243057446386924151990021227446103936135080
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φ(N3) = 627593708207414307207614412569114919302556.

Next, from Algorithm 1, we proceed to compute Ws for s = 1, 2, 3.

W1 = 1229655816721145549422

W2 = 1020114121838947634148

W3 = 1683825922716379967682.

Finally, solving x2 −Wsx + Ns = 0 for s = 1, 2, 3 yields (p1, q1), (p2, q2),
and (p3, q3), which lead to the factorization of three RSA moduli N1, N2, N3.
That is,

p1 = 869222551416087064319, q1 = 360433265305058485103,

p2 = 640826931328860063517, q2 = 379287190510087570631

p3 = 1126910726780136395479, q3 = 556915195936243572203.

From our result, one can observe that we get d ≈ N0.3593 which is larger
than Blömer and May’s bound of x < 1

3N
0.25 as reported by Blömer and May

(2004). Our d ≈ N0.3593 is also larger than Nitaj et al.’s bound x ≈ N0.344, as
reported by Nitaj et al. (2014).

3.2.2 The Attack on t RSA Moduli Ns = psqs Satisfying esds − kφ(Ns) = 1

In this section, we consider second case in which t RSA moduli satisfies t
equations of the form esds − kφ(Ns) = 1 for unknown integers ds and k, for
s = 1, . . . , t. In this case, every pair of the RSA instances has its own unique
decryption exponent ds.

Theorem 3.3. Let Ns = psqs be t RSA moduli for s = 1, · · · , t and t ≥ 2,
pairs (es, Ns) be public keys and (ds, Ns) be private keys with es < φ(Ns)
and esds ≡ 1 (mod φ(Ns)) is satisfied. Let e = min{es} = Nα be public
exponent. If there exists integers ds, k < Nγ , for all γ = t(1+2α)

2(3t+1) such that
esds − kφ(Ns) = 1 holds, then prime factors ps and qs of t RSA moduli Ns

can be successfully recovered in polynomial time for j = 3, . . . , i, 1
4 ≤ γ ≤ 1

2
and 0 < α < 1.
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Proof. For t ≥ 2 , j = 3, . . . , i, Ns = psqs be t moduli, e = min{es} = Nα

be public exponent for s = 1, . . . , t, and suppose that ds < Nγ is a positive
integer. Then equation esds − kφ(Ns) = 1 can be rewritten as

esds − k(Ns − (ps + qs) + 1) = 1

esds − k
(
Ns −

aj + bi

a
j
2 b

i
2

√
Ns +

aj + bi

a
j
2 b

i
2

√
Ns − (Ns − φ(Ns) + 1) + 1

)
= 1.

Then, we get:∣∣∣∣∣∣∣∣k
(
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

)
es

− ds

∣∣∣∣∣∣∣∣ =
∣∣∣∣1 + k

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
es

.

Let N = max{Ns} and suppose that ds, k < Nγ are positive integers for
s = 1, . . . , t. From Theorem 3.1, it has been shown that∣∣∣∣aj + bi

a
j
2 b

i
2

√
Ns + φ(Ns)−Ns − 1

∣∣∣∣ <
N2γ

(a
j+bi

a
j
2 b

i
2

+ 2)
√
N
.

Suppose also e = min{es} = Nα, for s = 1, · · · , t, then

∣∣∣∣1 + k

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
es

<

1 +Nγ

 N2γ

( a
j+bi

a
j
2 b

i
2

+2)
√
N


Nα

<

√
aj

bi
N3γ− 1

2
−α.

Hence, we get∣∣∣∣∣∣∣∣k
(
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

)
es

− ds

∣∣∣∣∣∣∣∣ <

√
aj

bi
N3γ− 1

2
−α.

We proceed to show the existence of integer k and t integers ds. Let ε =√
aj

bi
N3γ− 1

2
−α and γ = t(2α+1)

2(3t+1) . Then, we get

Nγεs = Nγ

(√
aj

bi
N3γ− 1

2
−α

)t
=

(
aj

bi

) t
2

Nγ+3γt−αt− t
2 =

(
aj

bi

) t
2

.
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Following Theorem 2.4,
(
aj

bi

) t
2
< 2

t(t−3)
4 · 3t for t ≥ 3, which gives Nγεt <

2
t(t−3)

4 · 3t. It follows that if k < Nγ then k < 2
t(t−3)

4 · 3t · ε−t s = 1, . . . , t,
yields ∣∣∣∣∣∣∣∣k

(
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

)
es

− ds

∣∣∣∣∣∣∣∣ < ε. (5)

This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal
t integers of the private key ds and integer k for s = 1, . . . , t. Next, from
equation esds − kφ(Ns) = 1 it computes

φ(Ns) =
esds − 1

k
ps + qs = Ns − φ(N − s) + 1

Finally, by finding the roots of x2 − (Ns − φ(Ns) + 1)x+Ns = 0, the prime
factors ps and qs can be revealed, which lead to the factorization of t RSA
moduli Ns for s = 1, . . . , t in polynomial time. �

Let

X1 =
N1 − aj+bi

a
j
2 b

i
2

√
N1 + 1

e1
, X2 =

N2 − aj+bi

a
j
2 b

i
2

√
N2 + 1

e2
,

X3 =
N3 − aj+bi

a
j
2 b

i
2

√
N3 + 1

e3
.

Define
T = [3t+1 × 2

(t+1)(t−4)
4 × ε−t−1].

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


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Taking suitable small positive integers a ,b, i and j, the matrix M can be
used in computing the reduced basis after applying the LLL algorithm.

Algorithm 2 Theorem 3.3

1: Initialization: The public key tuple (Ns, es, α, γ) satisfying Theorem 3.3.
2: Choose a, b, i, j and t to be suitable small positive integers and N =

max{Ns} for s = 1, . . . , t.
3: for any (a, b, i, j, t, N, α, γ) do
4: ε =

√
aj

bi
N3γ− 1

2
−α

5: e =: min{es} := Nα

6: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
7: end for
8: Consider the lattice L spanned by the matrix M as stated above.
9: Applying the LLL algorithm to L yields the reduced basis matrix K.

10: for any (M,K) do
11: J :=M−1

12: Q = JK.
13: end for
14: Produce ds, k from Q
15: for each triplet (ds, k, es) do
16: φ(Ns) :=

esds−1
k

17: Ws := Ns − φ(Ns) + 1.
18: end for
19: Solve the quadratic equation x2 −Wsx+Ns = 0
20: return the prime factors (ps, qs).

Example 3.3. In what follows, we give a numerical example to illustrate how
Theorem 3.3 works on three RSA moduli and their corresponding public expo-
nents:

N1 = 508565684954735704742859784656696946682831034301

N2 = 538297617783655149718818584876174245121129308529

N3 = 806652571994509083587232759066368614950521970341

e1 = 402089808843533444904596100065217739786701579763

e2 = 2665948372116064190729177913341857823771071618867
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e3 = 778898269291255219841128543110603569249229087205.

Observe that

N =max{N1, N2, N3}
=806652571994509083587232759066368614950521970341

es =min{e1, e2, e3}
=402089808843533444904596100065217739786701579763

with es = min{e1, e2, e3} = Nα with α = 0.9936884923. We have from

Algorithm 2, γ = t(2α+1)
2(3t+1) = 0.4481065478 and ε =

√
aj

bi
N3γ− 1

2
−α =

0.00000000975180072.
Applying Theorem 2.4 and using Algorithm 2 yields

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 597082054500000000000000000000. (6)

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Therefore, by applying the LLL algorithm to L, we obtain the reduced basis
with the following matrix,

K =

(
8051197063831403672974 −3316380041905576226082 −7576826145122107544902 −9125191037758557249748
−103794926253749172 18949362994951243653996 −1002285505825660882044 −4749905122361928365256

−8263862147578873962789 −870743310198078857373 11681460189223444731897 −26666825459534917105122
19426089548000671819143 4545536643713249211951 17157891182021747650461 −10035207312561620017386

)

Next, from Algorithm 2 we compute Q = JK

Q =

(
8051197063831403672974 10183203999249594565037 1625665464904405125824 8338083515173059332873
−103794926253749172 −131280466711866427 20957855795262523 −107493426964156141

−8263862147578873962789 10452184116634451867331 −1668605946859860234143 −8558326444887642738452
19426089548000671819143 24570238587706694105398 3922438197196066800948 20118294924379699623746

)
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From the second row of matrix Q we obtain k d1, d2 and d3 as follows:

k = 103794926253749172, d1 = 131280466711866427

d2 = 20957855795262523, d3 = 107493426964156141.

Using Algorithm 2, we compute φ(Ns) =
esds−1

k for s = 1, 2, 3. That is,

φ(N1) = 508565684954735704742858186345678007454703934400

φ(N2) = 538297617783655149718817110111669468997568641520

φ(N3) = 806652571994509083587230960661198002649532119232.

Next, from Algorithm 2 we proceed to compute Ws for s = 1, 2, 3.

W1 = 1598311018939228127099902

W2 = 1474764504776123560667010

W3 = 1798405170612300989851110.

Finally, solving x2 −Wsx + Ns = 0 for s = 1, 2, 3 yields (p1, q1), (p2, q2),
and (p3, q3) which lead to the factorization of three RSA moduli N1, N2, N3.
That is,

p1 = 1159826888096893980482861 q1 = 438484130842334146617041

p2 = 663660014540611073510141, q2 = 811104490235512487156869

p3 = 942937210338906570661877, q3 = 855467960273394419189233.

From our result, one can observe that we get min{d1, d2, d3} ≈ N0.340

which is larger than Blömer and May’s bound of x < 1
3N

0.25, as reported in
Blömer and May (2004). Our min{d1, d2, d3} ≈ N0.340 is also greater than
min{d1, d2, d3} ≈ N0.337, as reported in Nitaj et al. (2014).

3.2.3 The Attack on t RSA Moduli Ns = psqs Satisfying esd− ksφ(Ns) = zs

This section considers another case in which tRSA moduli satisfies t equations
of the form esd− ksφ(Ns) = zs for unknown positive integers d, ks, and zs
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for s = 1, . . . , t.
Taking s ≥ 2, let Ns = psqs, s = 1, . . . , t. The attack works for t instances
of public key pair (Ns, es) if there exists integer d and t integers ks, such that
equation esd − ksφ(Ns) = zs is satisfied. It shows that the prime factors ps
and qs of t RSA moduli Ns can be factored efficiently for N = max{Ns} and
d, ks, zs < Nγ , for all γ = 3t

2(4t+1) where 1
4 ≤ γ ≤ 1

2 . In this case, the RSA
instances shared common decryption exponent d.

Theorem 3.4. Let Ns = psqs be RSA moduli, (es, Ns) be public key pair and
(d, ps, qs) be private keys with es < φ(Ns) and esd ≡ 1 (mod φ(Ns)) is
satisfied. Let N = max{Ns}. If there exists positive integers d, ks, zs < Nγ ,
for all γ = 3t

2(4t+1) such that esd − ksφ(Ns) = zs holds, then prime factors
ps and qs of t moduli Ns can be recovered successfully in polynomial time for
s = 1, . . . , t, t ≥ 2, j = 3, . . . , i and 1

4 ≤ γ ≤
1
2 ..

Proof. For t ≥ 2, j = 3, . . . , i and suppose Ns = psqs, be t moduli. Let
N = max{Ns} and suppose that ks < Nγ for s = 1, . . . , t. Then equation
esd− ksφ(Ns) = zs can be rewritten as

esd− ks(Ns − (ps + qs) + 1) = zs

esd− ks
(
Ns −

aj + bi

a
j
2 b

i
2

√
Ns +

aj + bi

a
j
2 b

i
2

√
Ns − (Ns − φ(Ns) + 1) + 1

)
= zs.

Then,

∣∣∣∣∣∣ es

Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

d− ks

∣∣∣∣∣∣ =
∣∣∣∣zs + ks

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

.

(7)
Taking N= max{Ns} and suppose that ks, zs < Nγ are positive integers.
From Theorem 3.1, it has been established that∣∣∣∣aj + bi

a
j
2 b

i
2

√
Ns + φ(Ns)−Ns − 1

∣∣∣∣ <
N2γ

(a
j+bi

a
j
2 b

i
2

+ 2)
√
N

Ns −
aj + bi

a
j
2 b

i
2

√
Ns + 1 >

aj + bi

2aj
N.
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Putting the conditions into equation (7) yields∣∣∣∣zs − ks(Ns − φ(Ns) + 1− aj+bi

a
j
2 b

i
2

√
Ns

)
)

∣∣∣∣
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

≤

∣∣∣∣zs + ks

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

<

Nγ +Nγ

 N2γ

( a
j+bi

a
j
2 b

i
2

+2)
√
N


aj+bi

2aj
N

<
N4γ− 1

2

N

<

√
aj

bi
N4γ− 3

2 .

Then ∣∣∣∣∣∣ es

Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

d− ks

∣∣∣∣∣∣ <
√
aj

bi
N4γ− 3

2 .

We now proceed to show the existence of integer d and t integers ks, let ε =√
aj

bi
N4γ− 3

2 , with γ = 3t
2(4t+1) . Then it gives

Nγεt = Nγ

(√
aj

bi
N4γ− 3

2

)t
=

(√
aj

bi

)t
Nγ+4γt− 3t

2 =

(
aj

bi

) t
2

.

Following Theorem 2.4,
(
aj

bi

) t
2
< 2

t(t−3)
4 · 3t for t ≥ 3, which gives Nγεt <

2
t(t−3)

4 ·3t. It follows that if d < Nγ then d < 2
t(t−3)

4 ·3t ·ε−t for s = 1, . . . , t,
yields ∣∣∣∣∣∣ es

Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

d− ks

∣∣∣∣∣∣ < ε, d < 2
t(t−3)

4 · 3t · ε−t.
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This clearly satisfies the conditions of Theorem 2.4, and proceeds to reveal the
private key d and t integers ks for s = 1, . . . , t. Next from esd−ksφ(Ns) = zs
we make the following computations:

φ(Ns) =
esd− zs
ks

ps + qs = Ns − φ(Ns) + 1.

Finally, by finding the roots of x2 − (Ns − φ(Ns) + 1)x+Ns = 0, the prime
factors ps and qs can be revealed, which lead to the factorization of t RSA
moduli Ns for s = 1, . . . , t in polynomial time. �

Let

X1 =
e1

N1 − aj+bi

a
j
2 b

i
2

√
N1 + 1

,

X2 =
e2

N2 − aj+bi

a
j
2 b

i
2

√
N2 + 1

,

X3 =
e3

N3 − aj+bi

a
j
2 b

i
2

√
N3 + 1

.

Define
T = [3t+1 × 2

(t+1)(t−4)
4 × ε−t−1].

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Taking suitable small positive integers a, b, i and j the matrix M can be used
in computing the reduced basis after applying the LLL algorithm.
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Algorithm 3 Theorem 3.4

1: Initialization: The public key tuple (Ns, es, zs, γ) satisfying Theorem 3.4.
2: Choose a, b, i, j and t to be suitable small positive integers and N =

max{Ns} for s = 1, . . . , t.
3: for any (a, b, i, j, t, N, γ) do
4: ε =

√
aj

bi
N4γ− 3

2

5: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix M as stated above.
8: Applying the LLL algorithm to L yields the reduced basis matrix K.
9: for any (M,K) do

10: J :=M−1

11: Q = JK.
12: end for
13: Produce d, ks from Q
14: for each triplet (d, ks, es, zs) do
15: φ(Ns) :=

esd−zs
ks

16: Ws := Ns − φ(Ns) + 1.
17: end for
18: Solve the quadratic equation x2 −Wsx+Ns = 0
19: return the prime factors (ps, qs).

Example 3.4. In what follows, we give a numerical example to illustrate how
Theorem 3.4 works on three RSA moduli and their corresponding public expo-
nents:

Let N1 = 330296126221226061978488805127502203372577

N2 = 187396362359066080307391868109309718740567

N3 = 216436372402461777072305279786697609409967

e1 = 302169635060396919768302245253373846319703

e2 = 91199418785305795947645004809998556532621

e3 = 162134135066593548250015517503190950433936.

Observe that N = max{N1, N2, N3}

N = 330296126221226061978488805127502203372577.
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By using a = 3, b = 2, j = 3, i = 4 and since t = 3, we have from Algorithm

3, γ = 3t
2(4t+1) = 0.3461538462 and ε =

√
aj

bi
N4γ− 3

2 = 0.00002104606015

. Using Algorithm 3, for n = t = 3 we compute

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 206429515900000000000. (8)

Consider the lattice L spanned by the matrix

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Therefore, by applying LLL algorithm to L, we obtain the reduced basis

with the following matrix:

K =

(
221202829045687 185504894439445 185504894439445 57393070403596

−223267679085378 501267471654170 −2635612410692192 −2635612410692192

648416042445503 −1951421870899795 149685816490192 3013842083722924

1886353284926810 −1977885223309650 −1608797804624160 −1052325529382520

)

Next, from the Algorithm 3 we compute Q = KJ

Q =

(
221202829045687 202366218737588 107651873220345 165704724042021

−223267679085378 −204255235693633 −108656765317118 −167251518933801

648416042445503 593199929876965 315561974937328 485733396093500

1886353284926810 1725720159731879 918023813500959 1413081613255486

)

From the first row of matrix Q, we obtain d, k1, k2 and k3 as follows:

d = 221202829045687, k1 = 202366218737588,

k2 = 107651873220345, k3 = 165704724042021.

Using Algorithm 3, we compute φ(Ns) =
esd−zs
ks

for s = 1, 2, 3 where z1, z2
and z3 are:

z1 = 78214488852833, z2 = 81546995635627, z3 = 268274979696656

φ(N1) = 330296126221226061977286874278835760293956
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φ(N2) = 187396362359066080306393381432741963476000

φ(N3) = 216436372402461777071093307335033501180256.

Next, from Algorithm 3, we compute Ws for s = 1, 2, 3.

W1 = 1201930848666443078622

W2 = 998486676567755264568

W3 = 1211972451664108229712.

Finally, solving x2 −Wsx + Ns = 0 for s = 1, 2, 3 yields (p1, q1), (p2, q2),
and (p3, q3) which lead to the factorization of three RSA moduli N1, N2, N3.
That is

p1 = 776645004884812569823 q1 = 425285843781630508799

p2 = 747935011770876784817, q2 = 250551664796878479751

p3 = 994294007747013311743 q3 = 217678443917094917969.

From our result, one can observe that we get d ≈ N0.3455 which is larger
than Blömer and May’s bound of x < 1

3N
0.25, as reported in Blömer and May

(2004). Our d ≈ N0.3455 is also greater than d ≈ N0.344, as reported by Nitaj
et al. (2014).

3.2.4 The Attack on t RSA Moduli Ns = psqs Satisfying esds − kφ(Ns) = zs

This section presents another case in which t RSA moduli satisfies t equations
of the form esds−kφ(Ns) = zs for unknown positive integers ds, k and zs for
s = 1, . . . , t which can be simultaneously factored in polynomial time. In this
case, every pair of the RSA instances has its own unique decryption exponent
ds.

Theorem 3.5. Let Ns = psqs be t RSA moduli for s = 1, . . . , t, t ≥ 2 and
j = 3, . . . , i. Let (es, Ns) be public key pair, (ds, Ns) be private key pair with
es < φ(Ns) and esds ≡ zs (mod φ(Ns)) is satisfied. Let e=min{es} = Nα

be public exponent. If there exists positive integers ds, k, zs < Nγ ,for all
γ = t(2α+1)

2(3t+1) such that esds − kφ(Ns) = zs holds, then prime factors ps and
qs of t RSA moduli Ns can be successfully recovered in polynomial time for
s = 1, . . . , t, 1

4 ≤ γ ≤
1
2 and 0 < α < 1.
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Proof. Taking t ≥ 2 and j = 3, . . . , i . Suppose Ns = psqs is t RSA moduli
for s = 1, . . . , t and e = min{es} = Nα is public exponent and suppose that
ds < Nγ .
Then equation esds − kφ(Ns) = zs can be rewritten as

esds − k(Ns − (ps + qs) + 1) = zs

esds − k
(
Ns −

aj + bi

a
j
2 b

i
2

√
Ns +

aj + bi

a
j
2 b

i
2

√
Ns − (Ns − φ(Ns) + 1) + 1

)
= zs.

Then, we get∣∣∣∣∣∣∣∣k
(
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

)
es

− ds

∣∣∣∣∣∣∣∣ =
∣∣∣∣zs + k

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
es

.

Taking N = max{Ns} , ds, k, zs < Nγ be positive integers for s = 1, . . . , t.
From Theorem 3.1, it was shown that:∣∣∣∣aj + bi

a
j
2 b

i
2

√
Ns + φ(Ns)−Ns − 1

∣∣∣∣ <
N2γ

(a
j+bi

a
j
2 b

i
2

+ 2)
√
N
.

Also, suppose e = min{es} = Nα, then we have:

∣∣∣∣zs + k

(
aj+bi

a
j
2 b

i
2

√
Ns −Ns + φ(Ns)− 1

)∣∣∣∣
es

<

Nγ +Nγ

 N2γ

( a
j+bi

a
j
2 b

i
2

+2)
√
N


Nα

<

√
aj

bi
N3γ− 1

2
−α.

Hence,we get∣∣∣∣∣∣∣∣k
(
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

)
es

− ds

∣∣∣∣∣∣∣∣ <

√
aj

bi
N3γ− 1

2
−α.

We now proceed to show the existence of integer k and t integers ds. Let

ε =
√

aj

bi
N3γ− 1

2
−α and γ = t(2α+1)

2(3t+1) . Then it gives

Nγεt = Nγ

(√
aj

bi
N3γ− 1

2
−α

)t
=

(√
aj

bi

)t
N3γt− t

2
−tα =

(
aj

bi

) t
2

.
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Following Theorem 2.4,
(
aj

bi

) t
2
< 2

t(t−3)
4 · 3t for t ≥ 2, which gives Nγεt <

2
t(t−3)

4 ·3t. It follows that if k < Nγ then k < 2
t(t−3)

4 ·3t ·ε−t for s = 1, · · · , t,
yields ∣∣∣∣∣∣∣∣k

(
Ns − aj+bi

a
j
2 b

i
2

√
Ns + 1

)
es

− ds

∣∣∣∣∣∣∣∣ < ε.

This clearly satisfies conditions of Theorem 2.4, and proceeds to reveal the
private key d and t integers ks for s = 1, . . . , t. Next, from esds − kφ(Ns) =
zs, we compute:

φ(Ns) =
esds − zs

k
ps + qs = Ns − φ(N − s) + 1.

Finally, by finding the roots of x2 − (Ns − φ(Ns) + 1)x+Ns = 0, the prime
factors ps and qs can be revealed, which lead to the factorization of t RSA
moduli Ns for s = 1, . . . , t in polynomial time. �

Let

X1 =
N1 − aj+bi

a
j
2 b

i
2

√
N1 + 1

e1
,

X2 =
N2 − aj+bi

a
j
2 b

i
2

√
N2 + 1

e2
,

X3 =
N3 − aj+bi

a
j
2 b

i
2

√
N3 + 1

e3
.

Define
T = [3t+1 × 2

(t+1)(t−4)
4 × ε−t−1].

Consider the lattice L spanned by the matrix,
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M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Taking suitable small positive integers a, b, i and j, the matrix M can be used
in computing the reduced basis after applying the LLL algorithm.

Algorithm 4 Theorem 3.5

1: Initialization: The public key tuple (Ns, es, zs, α, γ) satisfying Theorem
3.5.

2: Choose a, b, i, j and t to be suitable small positive integers and N =

max{Ns} for s = 1, . . . , t.
3: for any (a, b, i, j, t, N, γ) do
4: ε =

√
aj

bi
N3γ− 1

2
−α

5: e =: min{es} := Nα

6: T = [3t+1 × 2
(t+1)(t−4)

4 × ε−t−1] for t ≥ 2.
7: end for
8: Consider the lattice L spanned by the matrix M as stated above.
9: Applying the LLL algorithm to L yields the reduced basis matrix K.

10: for any (M,K) do
11: J :=M−1

12: Q = JK.
13: end for
14: Produce ds, k from Q

15: for each triplet (ds, k, es, zs) do
16: φ(Ns) :=

esds−zs
k

17: Ws := Ns − φ(Ns) + 1.
18: end for
19: Solve the quadratic equation x2 −Wsx+Ns = 0

20: return the prime factors (ps, qs).
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Example 3.5. In what follows, we give a numerical example to illustrate how
Theorem 3.5 works on three RSA Moduli and their corresponding public expo-
nents:

N1 = 235477579416272294755920992128112040409148311

N2 = 831174991534658731118063299506732533313468169

N3 = 977372981921206430350190059454188251970143743

e1 = 38796943249846315733671518375477598229207909

e2 = 58672293873164211628641295459464906640454441

e3 = 49895674246929693821750986970186909558125828.

Observe that

N = max{N1, N2N3} = 977372981921206430350190059454188251970143743.

es = min{e1, e2e3} = 38796943249846315733671518375477598229207909

with es = min{e1, e2e3} = Nα for α = 0.9688539474. Since t = 3, we have
γ = t(2α+1)

2(3t+1) = 0.4406561842, Applying Theorem 2.4 and using Algorithm 4,
we compute

T = [3t+1 · 2
(t+1)(t−4)

4 · ε−t−1] = 3859210630000000000000000000. (9)

Consider the lattice L spanned by the matrix,

M =


1 −[T (X1)] −[T (X2)] −[T (X3)]

0 T 0 0

0 0 T 0

0 0 0 T


Taking a = 3, b = 2, j = 3, i = 4, t = 3.
Therefore, by applying the LLL algorithm to L, we obtain the reduced basis
with the following matrix,

K =

( −258385025665326 37991546648123867848 27196940459134138062 −30693403032299059072
−446111740960603908141 245661989555708003468 89550637443021325283 247534007918421869248
−765709654369103205185 −368855289174869031620 −54097411326677039345 −54097411326677039345
−145325909385583133694 −531251521480873120888 −1698445736073455595678 874455949558096917632

)
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Next, from Algorithm 4 we compute Q = KJ ,

Q =

( −258385025665326 −1568264798833691 −3660384780324555 −5061331404572551
−446111740960603908141 −2707669834555799110441 −6319795904315895982054 −8738584438701244316363
−765709654369103205185 −4647465517717588548099 −10847346736844439635557 −14998974148999262683205
−145325909385583133694 −882053855331017641771 −2058744486187145212854 −2846692013894143220284

)
From the first row of matrix Q, we obtain k, d1, d2 and d3 as follows:

k = 258385025665326, d1 = 1568264798833691,

d2 = 3660384780324555, d3 = 5061331404572551.

Using Algorithm 4, we compute φ(Ns) = esds−zs
k for s = 1, 2, 3, where

z1, z2, z3 are :

z1 = 1077318360002647, z2 = 722423181715659 z3 = 1957330455972268

φ(N1) = 235477579416272294755887767075650847215506072

φ(N2) = 831174991534658731118005254927696226275739396

φ(N3) = 977372981921206430350126917256178546286237960.

Next, from Algorithm 4 we compute Ws for s = 1, 2, 3.

W1 = 33225052461193193642240

W2 = 58044579036307037728774

W3 = 63142198009705683905784.

Finally, solving x2 − (Ns −Wsx + Ns = 0 for s = 1, 2, 3 yields (p1, q1),
(p2, q2), and (p3, q3), which lead to the factorization of three RSA moduli
N1, N2, N3. That is,

p1 = 22976365350655154588653 q1 = 10248687110538039053587

p2 = 32356700611714851032147 q2 = 25687878424592186696627

p3 = 35971247917448150598803 q3 = 27170950092257533306981.

From our result, one can observe that we get min{d1, d2, d3} ≈ N0.337

which is larger than Blomer and May’s bound of x < 1
3N

0.25, as reported in
Blömer and May (2004).
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4 CONCLUSION

This paper proposed and mounted a successful cryptanalysis attack on RSA
moduli N = pq using generalized prime difference method which produced

an improved decryption exponent bound d <
√

aj+bi(bi−2)
2bi

N
3
4
−γ . The paper

also presented four attacks that successfully led to the factorization of t RSA
moduli Ns = psqs using simultaneous Diophantine approximations and LLL
algorithm. In all the reported attacks, we improved the decryption exponent
bound.
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