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ABSTRACT

Scalar multiplication plays a vast role in elliptic curve cryptogra-
phy (ECC). It consumes numerous operation cost, especially when deal-
ing with a large prime field. Many methods were proposed to reduce
the cost of computing scalar multiplication in an elliptic curve. One of
the introduced methods is the Integer Sub-Decomposition (ISD) method
which applies bilayer decomposition on the scalar multiplication. In this
paper, we derive the efficiently computable endomorphisms (or fast en-
domorphism) based on the concept of isomorphism and isogeny by us-
ing Velu’s formulae. These fast endomorphisms are applied in the ISD
method to accelerate the scalar multiplication on elliptic curves with j-
invariant 0. Also, we further discuss the number of operations of the
derived fast endomorphisms and compare the number of operations be-
tween original ISD method and the improved ISD method.

Keywords: Elliptic curve, efficient endomorphism, scalar multiplica-
tion, ISD method, j-invariant 0.
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1 INTRODUCTION

Elliptic Curve Cryptography (ECC) is one of the cryptographic protocol in
Public Key Cryptography (PKC), other than Diffie-Hellman (DH) and Rivest-
Shamir-Adleman (RSA) cryptosystem Galbraith (2012). The use of elliptic
curve in cryptography was first discovered by Miller and Koblitz Gallant et al.
(2001). Cryptography is a platform that provides secure communication be-
tween two parties to pass information in public networks. It provides authen-
tication of one party to another from being traced by eavesdroppers Galbraith
(2012).

An ordinary elliptic curve E is defined by

E : y2 = x3 +Ax+B

where A,B are scalars defined in a field K (Silverman, 2009). ECC always
considered K as a finite field Fp. The order of an elliptic curve defined over
Fp is denoted as #E(Fp) = nh with prime number n and cofactor h. Note
that, h ≤ 4 for cryptographic purposes. The set of points in E form an abelian
group with a single prime subgroup. One important properties of an elliptic
curve is the discriminant, ∆ defined by the constant ∆ = −16(4A3 + 27B2).
∆ is used to determine the smoothness of an elliptic curve. Another important
properties of an elliptic curve is the j-invariant, which is defined by j(E) =

1728 4A3

4A3+27B2 . The j-invariant of an elliptic curve can be used to distinguish
the family of curves as any two elliptic curves with the same j-invariant are
belong to the same family of curves and they are said to be isomorphic to each
other. One of the types of family of curves is the elliptic curve with j-invariant
0, E0.

Having same security level with a shorter key attract attention to ECC as
compared with other cryptosystems such as RSA (Salah and Said, 2014). A
160-bit ECC have equivalent level of security as 2048-bit RSA (Bafandehkar
et al., 2013, Kwon et al., 2018). The security of ECC is based on the hardness
to solve the discrete logarithm problem, where one needs to find scalar k such
that

Q = kP

where Q is the public key, P is the parameter that has been agreed by both
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parties and k is the secret key. In ECC, the parameter P and Q are referring
to points on an elliptic curve which belongs to the prime subgroup of order n,
while k is the private key such that k ∈ [1, n].

There are two methods to compute kP . The first method is by encoding
k into a few forms such as binary form. From the binary form of k, we can
identify the number of point additions and point doublings needed to compute
kP , where each point addition P + S such that S 6= P costs 2M + 1S + 1I
while each point doubling 2P costs 2M + 2S + 1I such that M,S, I denote
multiplication, squaring and inversion operation, respectively. However, as k
getting larger, the operation cost of kP will be numerous. This will later affect
the efficiency of ECC. Therefore, many researchers are trying to reduce the
computational cost by proposing new approaches and algorithms.

The second method is by using endomorphism. One of the approaches
that has been proposed is the Gallant-Lambert-Vanstone (GLV) method where
it decomposes scalar k into two shorter scalars k1, k2 with the help of efficient
endomorphisms (or also known as fast endomorphisms) such that max{| k1 |
, | k2 |} ≤

√
n (Gallant et al., 2001). This method able to reduce the cost

of scalar multiplication by 50% as long as they able to decompose k and sat-
isfy the GLV condition max{| k1 |, | k2 |} ≤

√
n. In 2010, Zhou et. al

(Zhou et al., 2010) came up with three-dimensional GLV method on elliptic
curves with j-invariant 0, E0. However, if the GLV condition is not satisfied,
the cost of computing scalar multiplication by using the GLV method will be
numerous. Therefore, in 2013, Ajeena and Kamarulhaili proposed the Integer
Sub-Decomposition (ISD) method which applies a bilayer decomposition on
the scalar multiplication with the help of another two endomorphisms (Ajeena
and Kamarulhaili, 2014). In spite of using fast endomorphism, the original
ISD method used endomorphism Φ = λ where λ is chosen randomly from
[1, n− 1]. As a result, the computational cost will remain to be high if one
chooses a bigger λ as the cost of computing λP will be big as well.

Our Contribution. This paper derived the fast endomorphism defined in
elliptic curve with j-invariant 0, E0 by studying the algebraic structure of an
elliptic curve. Previously, in Antony and Kamarulhaili (2018), we used dif-
ferent approach to derive the fast endomorphisms in E0. This paper proposed
the endomorphism Φ to be defined as Φ = ψφ where ψ is the isomorphism
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mapping and φ is the isogeny mapping defined on an elliptic curve. We first
identify the set of torsion points existed in E0 which later being used in the
Velu’s algorithm to construct the isogeny of E0. However, not all isogeny rep-
resents the computable endomorphism. The derived fast endomorphism can
be used in both GLV and ISD method to speed up their computation. We
also compute the operation counts for each of the derived fast endomorphism.
Next, we apply the derived fast endomorphisms into the ISD method and do
the comparison with and without using fast endomorphism to compute scalar
multiplication.

Outline of This Paper. This paper divided into five sections, starting with
a brief introduction on elliptic curve cryptography and previous works on el-
liptic scalar multiplication methods in Section 1. Section 2 listing out a few
theorems related to this work. Next, we briefly explain on the elliptic curve
with j-invariant 0, E0 in Section 3. Section 4 derives the fast endomorphism in
E0 and its respective operation counts. Finally, Section 5 concludes the paper.

2 PRELIMINARIES

We adopted a few concepts related to this study as follows:

Theorem 2.1. (Hankerson et al., 2004) Define elliptic curves over a field K
as E(K) : y2 = x3 + Ax + B and Ē(K) : y′2 = x′3 + A′x′ + B′. E
and Ē are said to be isomorphic over K̄, the algebraic closure of K, if every
isomorphism ψ satisfy the restricted form of change of variables

x = u2x′ and y = u3y′,

for some u ∈ K̄∗ where K̄∗ is the multiplicative group of K̄.

Definition 2.1. (Ribenboim, 2001) An algebraic integer is a complex number
which is a root of a monic polynomial X2 + rX + s = 0 where r, s ∈ Z.

An endomorphism Φ is a homomorphism that maps E to itself. An endo-
morphism acted on point P = (x, y) can be defined by rational function

Φ(x, y) = (f1 (x, y) , f2 (x, y)) = (x′, y′)
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where Q = (x′, y′) and P,Q ∈ E. Every endomorphism satisfy a quadratic
polynomial with integer coefficient. The polynomial of algebraic integer can
be used to represent the endomorphism’s polynomial. The endomorphism’s
polynomial can also be defined as Φ2 − tΦΦ + nΦ = 0 where tΦ = Φ + Φ̂
and nΦ = Φ · Φ̂ are the trace and norm of the endomorphism, respectively.
An isogeny φ is a homomorphism that maps E to Ẽ such that φ(OE) = OẼ .
The isogeny φ : E → Ẽ can be computed using Velu’s formulae Washington
(2007). Velu’s formulae construct the mapping for the isogeny based on the
torsion points exist in the elliptic curve. The isogeny’s mapping from E to Ẽ
can be used to represent the endomorphism’s mapping from E and E if it is
able to preserve the structure of the elliptic curve by having the same j-invariant
of E and Ẽ.

3 ELLIPTIC CURVES WITH J-INVARIANT 0

Elliptic curve with j-invariant 0 is curve in the form of

E0 : y2 = x3 +B.

According to (Cohen, 1996), E0 has discriminant of quadratic field D = −3
where K = Q(

√
−3). The largest subring of K or also known as the maximal

order is given by OK = Z
[

1+
√
−3

2

]
. The integral basis of K = Q(

√
−3) are

{1, δ} where δ = 1+
√
−3

2 . The first endomorphism ring in E0 is chosen to be
isomorphic to its maximal order. The following proposition defines the first
endomorphism in E0.

Proposition 3.1. (Antony and Kamarulhaili, 2018) Let E0 : y2 = x3 + B
be an elliptic curve where B ∈ Fp and p ≡ 1 (mod 3). There exists a point
P ∈ E0(Fp) with order n (prime), then the endomorphism Φ satisfies Φ(P )2+
Φ(P ) + P ≡ OE0 (mod n) where

Φ : E0 (Fp) → E0 (Fp)
: (x, y) 7→ (γx, y)
: OE0 → OE0
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where γ ∈ Fp satisfies γ2 + γ + 1 ≡ 0 (mod p).

Clearly, the first endomorphism represents complex multiplication by β =
−1+

√
−3

2 on E0.

4 CONSTRUCTING THE FAST ENDOMORPHISM

Define E0 : y2 = x3 + B. Solving E0, we obtained the set of points of order
two and three denoted by E[2] and E[3] where E[2] = {(

√
B, 0),∞} and

E[3] = {(0,
√
B), (0,−

√
B),∞}. These are the torsion points exist in E0.

As mentioned earlier, these points used to construct the isogeny from E0 to
Ẽ0 by using Velu’s formulae. Before constructing the isogeny, it is important
to highlight that the ISD method needs three endomorphisms to decompose
scalar k. Thus, we suggested that the second and third endomorphisms should
also belong to the same imaginary quadratic field K = Q(

√
−3) as shown in

Figure 1.

Figure 1: ISD decomposition for K = Q(
√
−3).

From the figure above, the second layer of decomposition are choose to
be defined over the same imaginary quadratic field as the curve itself, which
is K = Q(

√
−3). Since the ring for the first endomorphism is isomorphic to

maximal order OK and we want the second and third endomorphisms’ ring
belong to the same imaginary quadratic field, then the rings formed by the
second and third endomorphisms should be the subrings of OK .
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The following lemma describes the construction of the other two non-
maximal orders which belong to the same complex quadratic field.

Lemma 4.1. Define E0 : y2 = x3 + B. Let kP = k1P + k2Φ (P ) defined
over a field K = Q

(√
−3
)

with a maximal order, OK = Z
[

1+
√
−3

2

]
. Then,

there exists two other non-maximal orders in K = Q
(√
−3
)

which are given

by Z
[√
−3
]

and Z
[

3+
√
−3

2

]
.

Proof. The largest subring forK = Q
(√
−3
)

is given byOK = Z
[

1+
√
−3

2

]
=

Z [δ] with the integral basis for OK as {1, δ}. Any algebraic integer in OK
can be written as the linear combination of its basis in the form of Z =
a (1) + b

(
1+
√
−3

2

)
where a, b ∈ Z. By choosing a = −1, b = 2 and

a = 1, b = 1, there exist algebraic integers ZΦ1 =
√
−3 and ZΦ2 = 3+

√
−3

2
in OK . Let the integral basis for the first non-maximal order to be {1, ZΦ1}.
Any algebraic integer formed by the linear combination of this basis are be-
long to Z [ZΦ1 ] = Z

[√
−3
]
. Similarly, by letting the integral basis for the

second non-maximal order as {1, ZΦ2}, any algebraic integer form by the lin-
ear combination of this basis are belong to Z [ZΦ2 ] = Z

[
3+
√
−3

2

]
. These rings

are the subrings of the maximal order, thus they are the non-maximal order of
Q
(√
−3
)
. �

ZΦ1 and ZΦ2 later become the generator for the subrings Z
[√
−3
]

and

Z
[

3+
√
−3

2

]
which are isomorphic to the second and third endomorphisms’

ring. The algebraic integers are chosen to be ZΦ1 =
√
−3 and ZΦ2 = 3+2

√
−3

2
as it is the lowest form of linear combination with the smallest norm that can
be obtained from the integral basis of the largest subring in Q

(√
−3
)
. Follow

Definition 2.1, ZΦ1 and ZΦ2 should satisfy a polynomial of degree two respec-
tively. The characteristic polynomial for the second and third endomorphisms
are given in the following lemma.

Lemma 4.2. Let E0 : y2 = x3 + B be an elliptic curve over Fp. Given the
non-maximal order for the second and third endomorphisms as Z

[√
−3
]

and

Z
[

3+
√
−3

2

]
, respectively. Then, the characteristic polynomial for the endo-

morphisms are given as Φ2
1 + 3 = 0 and Φ2

2 − 3Φ2 + 3 = 0.
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Proof. Let ZΦ1 =
√
−3 be root of a monic polynomial, where its conjugate

ẐΦ1 = −
√
−3. Then we have the trace and norm of endomorphism as tΦ =

ZΦ1 + ẐΦ1 = 0 and nΦ = ZΦ1 + ẐΦ1 = 3. Since ZΦ1 is an algebraic integer,
by Definition 2.1 it satisfy characteristic polynomial Φ2

1 + 3 = 0. Similarly,
for ZΦ2 = 3+

√
−3

2 , where it should satisfy the characteristic polynomial Φ2
2 −

tΦ2Φ + nΦ2 = Φ2
2 −

(
ZΦ2 + ẐΦ2

)
Φ +

(
ZΦ2 · ẐΦ2

)
= Φ2

2 − 3Φ2 + 3 = 0

such that ẐΦ2 = 3+
√
−3

2 . �

In this paper, we adopted the concept of isogeny φ and isomorphism ψ to
derive our fast endomorphism where Φ = ψφ. As mentioned in preliminaries
section, φ : E0 → Ẽ0 and ψ : Ẽ0 → E0 where

E0
φ−→ Ẽ0

ψ−→ E0

(x, y)
φ−→ (X,Y )

ψ−→ (x′, y′).

The following theorem derives the second and third endomorphisms’ map-
ping in E0 : y2 = x3 +B by using a point which belong to the kernel of E[3].

Theorem 4.1. Define E0 : y2 = x3 +B over Fp where p ≡ 1 (mod 3). There
exists a point Q ∈ E[3] and point P ∈ E0 (Fp) with prime order n. Given
the polynomial for the second and third endomorphisms as Φ2

1 + 3 = 0 and
Φ2

2 − 3Φ2 + 3 = 0, respectively. Then, the second and third endomorphisms’s
mappings are defined by

Φ1,2 (x, y) =

(
x3 + 4B

ε21,2x
2
, y
x3 − 8B

ε31,2x
3

)

where Φ1 ≡ ε1 (mod p) and Φ2 ≡ ε2 (mod p).

Proof. Choose a torsion point with order three, Q where
E[3] =

{
(0,
√
B), (0,−

√
B),OE0

}
. Let Q =

(
0,
√
B
)

and P = (x, y)
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where P /∈ Ker (E [3]). Following Velu’s formulae, we have

F (x, y) = x3 +B − y2 = 0

Fx = 3x2

Fy = −2y

uQ = (Fy (Q))2 = 4B

vQ = 2Fx (Q)− a1Fy (Q) = 0.

The isogeny is defined by φ : (x, y)→ (X,Y ) where

X = x+
vQ

x− xQ
+

uQ

(x− xQ)2 =
x3 + 4B

x2

and

Y = y − uQ
2y + a1x+ a3

(x− xQ)3 − vQ
a1 (x− xQ) + y − yQ

(x− xQ)2

−
a1uQ − Fx (Q)Fy (Q)

(x− xQ)2

= y

[
x3 − 8B

x3

]
.

The separable isogeny φ : (x, y)→ (X,Y ) from E to Ẽ where

Ẽ : Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6

and A1 = a1 = 0, A2 = a2 = 0, A3 = a3 = 0, A4 = a4 − 5v = 0,
A6 = a6 −

(
a2

1 + 4a2

)
v − 7w = B − 7(4B) = −27B. This implies Ẽ0 :

y2 = x3−27B and φ(x, y) =
(
x3+4B
x2

, y x
3−8B
x3

)
as the isogeny φ : E0 → Ẽ0.

Since j(E0) = j(Ẽ0), then E0
∼= Ẽ0. According to Theorem 2.1 , Ẽ0 satisfies

X = u2x′ and Y = u3y′ where u ∈ K̄∗ and (x′, y′) ∈ E0. Then, we have

E0
φ−→ Ẽ0

ψ−→ E0

(x, y)
φ−→ (X,Y )

ψ−→ (x′, y′)

where φ : E0 → Ẽ0 is the isogeny map and ψ : Ẽ0 → E0 is the isomorphism
map. By definition of an endomorphism, an endomorphism Φ is a homormor-
phism which maps E0 to E0. Since (x′, y′) ∈ E0, then we have
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Φ: E0 −→ E0

(x, y) −→ (x′, y′)

such that x′ = X
u2

and y′ = Y
u3

. Let u denotes the roots for the polynomial of
endomorphisms modulo p implies Φ1,2(x, y) = (X

ε2
, Y
ε3

) where

Φ1,2 (x, y) =

(
x3 + 4B

ε21,2x
2
, y
x3 − 8B

ε31,2x
3

)
such that Φ1 ≡ ε1 (mod p) and Φ2 ≡ ε2 (mod p). �

To ensure that our fast endomorphism able to accelerate the scalar multi-
plication, we compute the number of operations needed for each of the endo-
morphisms. Next proposition describes the operation counts of the fast endo-
morphisms that has been defined earlier in this paper. Example 3.1 illustrates
the improvement of the ISD method by using fast endomorphism.

Proposition 4.1. Let E0 : y2 = x3 + B defined over a prime field, Fp. Let
P be a point in E0(Fp) with prime order n. Given the first endomorphism’s
mapping as λ(x, y) = (γx, y). And the second and third endomorphisms’
mapping are given as

λ1,2(x, y) =

(
x3 + 4B

ε21,2x
2
, y

[
x3 − 8B

ε31,2x
3

])
where λ1,2, γ and ε are the roots of the polynomial of the endomorphism con-
gruent to n and p, respectively. Note that, λ1,2, ε1,2 6≡ 1+

√
−3

2 (mod n) and

λ1,2, ε1,2 6≡ 1+
√
−3

2 (mod p). Then, the number of operations needed to com-
pute λP is 1M while the number of operations needed to compute λ1,2P is
4M + 1S + 2I where M,S, I denote multiplication, squaring and inversion,
respectively.

Proof. The number of operations for the scalars correspond to each fast en-
domorphism is calculated in the following table:

The first endomorphism needs 1M to compute λP while the second and
third endomorphisms need 4M+1S+2I whereM,S, I denote multiplication,
squaring and inversion, respectively. �
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Operation \Endomorphism First Second Third
Multiplication 1 4 4

Squaring 0 1 1
Inversion 0 2 2

Total 1M 4M+1S+2I 4M+1S+2I

Table 1: Number of Operations for Scalars correspond to each Fast
Endomorphisms.

Example 4.1. Let E0 : y2 = x3 + 3 be a curve defined over F463 where
p = 463 ≡ 1 (mod 3). There exists a point P = (201, 120) in E0 with order
n = 487 (a prime number). The first endomorphism given as
Φ2 + Φ + 1 = 0 which corresponds to 232P and 254P . While the second and
third endomorphisms correspond to 22P, 465P and 234P, 256P , respectively.
The following table compares the cost of computing in term of their
operation counts for each scalar multiplications obtained from the endomor-
phisms using the repeated additions and doublings via binary form approach
and the fast endomorphisms’ mapping where mP denotes values obtained
from these three endomorphisms on E0.

mP \Approaches
Repeated additions
and doublings

Fast
endomorphism

232P 20M + 17S + 10I 1M

254P 26M + 20S + 13I 1M

22P 12M + 10S + 6I 4M + 1S + 2I

465P 24M + 20S + 12I 4M + 1S + 2I

234P 22M + 18S + 11I 4M + 1S + 2I

256P 14M + 14S + 7I 4M + 1S + 2I

Table 2: Comparison of Operation Counts between Repeated Additions
and Doublings and Fast Endomorphisms’ Mapping.

Choose scalar k = 365 and we want to compute 365P , where k =
(101101101)2. The cost of computing kP by using repeated addition and dou-
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bling operations involve 26 multiplications, 21 squarings and 13 inversions.
Next table compares the operation counts in the ISD method without and with
fast endomorphism.

ISD method
With
fast endomorphism

Without
fast endomorphism

−5P + (−11)Φ1(P )
−3P + (−9)Φ2(P )

−8P − 11(465P )
−9(256P )

−8P − 11(465P )
−9(256P )

where
k1,1 = −5, k2,1 = −3 = (6M + 6S + 3I) = (6M + 6S + 3I)

k1,2 = −11, +(10M + 8S + 5I) +(10M + 8S + 5I)
k2,2 = −9, +(8M + 7S + 4I) +(8M + 7S + 4I)

given
Φ1(P ) = 465P +(4M + 1S + 2I) +(24M + 20S + 12I)

and
Φ2(P ) = 256P . +(4M + 1S + 2I) +(14M + 14S + 7I)

Note that:
there are two
addition processes

+2(2M + 1S + I) +2(2M + 1S + I)

Total 36M + 25S + 18I 66M + 57S + 33I

Table 3: Comparison between Number of Operations for ISD Method
without and with Fast Endomorphism to compute 365P .

From Table 3, the number of operations needed to compute 8P where 8 =
(1000)2 is 3(2M + 2S + I) = 6M + 6S + 3I . Meanwhile, the number of
operations needed to compute 11P and 9P are 10M + 8S + 5I and 8M +
7S+ 4I , respectively. The operation counts for 465P and 256P without using
endomorphism are taken from Table 2.

Since the inversion operation consumes highest running time among all
three operations causing it to be the most expensive operation, the speed up
percentage between the inversion operations in the ISD method using both
approaches in Table 3 is computed, where 33−18

33 × 100% ≈ 45%. For this
case, it is clear that using fast endomorphisms able to speed up the ISD method
by reducing the number of operations needed approximately by 45%.
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5 CONCLUSION

Elliptic curve plays a vast role in modern cryptography; mainly ECC. One of
the drawbacks in ECC is the operation cost consumed by the scalar multipli-
cation. The GLV and ISD method are some of the approaches that have been
proposed to enhance the computational speed and reduce the computational
cost. However, the number of operations needed by the ISD method still need
to be reduced. By working on the imaginary quadratic field with D = −3,
the ISD method can accelerate the scalar multiplication problem in E0. The
largest ring which consists of all algebraic integers in E0 defined over K is
denoted by OK . To solve scalar multiplication, the ISD method requires three
endomorphisms. In this paper, the first endomorphism’s ring is chosen to be
isomorphic to OK corresponds to a unique polynomial, Φ2 + Φ + 1 = 0. The
cost of computing this endomorphism only involve one multiplication opera-
tion. The second and third endomorphisms are chosen to be as Φ2

1 + 3 = 0
and Φ2

2 − 3Φ2 + 3 = 0, where their endomorphisms’ rings are isomorphic to
the subrings in Z(

√
−3). Velu’s formulae and isomorphism concept are used

to construct the endomorphisms’ mapping for the second and third endomor-
phisms. The Velu’s formulae applied on torsion points with order three that
exists in E0. The number of operations needed by the scalars correspond to
these endomorphisms is four multiplications, one squaring and two inversions.
Even with a larger field, the operation cost will remain unchanged. As a result,
the operation cost of computing kP is greatly reduced especially when k is
getting larger.
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