International Journal of Cryptology Research 10(1): 1 - 21 (2020)

NTRU Public-Key Cryptosystem and Its Variants: An Overview

Nurshamimi Salleh^{*1} and Hailiza Kamarulhaili¹

¹School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

E-mail: mymy_nsbs@yahoo.mail.com.my, hailiza@usm.my *Corresponding author

ABSTRACT

NTRU is a lattice-based public-key cryptosystem which operates in a polynomial ring with integer coefficients. The encryption algorithm, namely NTRUEncrypt has been widely studied due to its resistance to quantum computer-based attacks. There are various NTRUEncrypt variants proposed since NTRU was introduced in 1996. This paper gives an overview and the compilation of several developments of NTRUEncrypt and its variants.

Keywords: NTRUEncrypt, polynomial ring, encryption, decryption.

1 INTRODUCTION

In the modern world today, the development of communication networks happen so rapidly and this is a result of the ever-expanding internet network usage. Consequently, security becomes essential to keep communication data safe and

secure from any internet threats. The security lacking leave the system vulnerable to attacks and miss use of important data by an adversary. This can be overcome by exploiting public-key cryptography (PKC) which has features such as confidentiality, data integrity, authentication, and non-repudiation. With these features, PKC can provide security for communication networks, especially for ensuring the privacy and confidentiality of important information.

Public-key cryptosystems are designed based on hard computational problems. Public-key cryptosystems, such as Diffie Hellman key exchange protocol (Diffie and Hellman, 1976) is based on discrete logarithm problem, RSA cryptosystem (Rivest et al., 1978) is based on factorization problem, McEliece cryptosystem (McEliece, 1978) is based on a coding problem, ElGamal cryptosystem (ElGamal, 1985) is based on discrete logarithm problem, Elliptic Curves Cryptosystem (ECC) (Koblitz, 1987, Miller, 1985) is based on elliptic curves discrete logarithm problems and NTRU cryptosystem (Hoffstein, 1996) is based on lattice problems. These are several examples of well-known publickey cryptosystems. Remarkably, a public-key cryptosystem that is designed based on the hard computational problem is intractable in practice. And yet, all those public-key cryptosystem. For this reason, the NTRU cryptosystem is more preferred compared to others mentioned above.

This paper begins with a description of NTRU including its mathematical aspect, construction, and comparisons with RSA (and ECC) in Section 2. Followed by a brief overview of NTRUEncrypt variants in Section 3. Finally, Section 4 concludes.

2 THE NTRU CRYPTOSYSTEM

NTRU that stands for Nth-Degree Truncated Polynomial Ring was invented by three mathematicians from the Department of Mathematics, Brown University, that are Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman. They presented NTRU at rump session Crypto96 but the preprint (Hoffstein, 1996) was rejected by the organizing committee of Crypto97. In 1998, they successfully published NTRU (Hoffstein et al., 1998), which is the NTRU-1996 with

some added information based on comments from several mathematicians as well as from the article by Coppersmith and Shamir (1997). NTRU-1998 is also known as NTRUEncrypt. Indeed, NTRUEncrypt refers to the encryption algorithm of NTRU. Note that NTRU also consists of the digital signature algorithm, namely NTRUSign but will not be discussed in this paper.

In 2009, NTRUEncrypt was officially being standardized for the IEEE Std 1363.1 where IEEE 1363.1 is the lattice-based code for public-key cryptography in the Institute of Electrical and Electronics Engineers (IEEE) standardization project. A year later, NTRUEncrypt received another encryption standard, namely the X9.98 standard from the Accredited Standards Committee X9 in the financial services industry. NTRUEncrypt also has been issued for the National Institute of Standards Technology (NIST) post-quantum cryptography standardization in 2017.

2.1 Mathematical Aspect of NTRUEncrypt

NTRUEncrypt exploits the algebraic structure of the polynomial ring, $R = \mathbb{Z}[X]/(X^N - 1)$. To be more specific, the ring R, is the ring of truncated (or convolution) polynomials of degree N - 1 with integer coefficients in the form of $a_0 + a_1X + a_2X^2 + \cdots + a_{N-2}X^{N-2} + a_{N-1}X^{N-1}$. In modulo p and q, the ring R can be respectively defined by

$$R_p = \frac{(\mathbb{Z}/p\mathbb{Z})[X]}{X^N - 1}$$
, and $R_q = \frac{(\mathbb{Z}/q\mathbb{Z})[X]}{X^N - 1}$.

Let an element $F \in R$ be a polynomial with the vector of its coefficients as $F = \sum_{i=0}^{N-1} F_i X^i \equiv [F_0, F_1, \dots, F_{N-1}]$. Then the addition and multiplication of two elements in R are given by

$$F + G = \sum_{i=0}^{N-1} F_i X^i + \sum_{j=0}^{N-1} G_j X^j,$$

and

$$F * G = \left(\sum_{i=0}^{N-1} F_i X^i\right) * \left(\sum_{j=0}^{N-1} G_j X^j\right) = \sum_{k=0}^{N-1} \left(\sum_{i+j \equiv k \pmod{N}} F_i G_j\right) X^k,$$

respectively. Next, the width (or size) of F is defined by

$$||F|| = \sqrt{\sum_{i=0}^{N-1} (F_i - \bar{F})^2} = \sqrt{\sum_{i=0}^{N-1} F_i^2 - \frac{1}{N} \left(\sum_{i=0}^{N-1} F_i\right)^2},$$

where $\overline{F} = (\sum_{i=0}^{N-1} F_i)/N$ is the coefficients average of F. Then the width of two elements in R is given by the quasi-multiplicative norm, $||F * G|| \approx ||F|| \cdot ||G||$.

As for security, the underlying hard problem for NTRUEncrypt is based on the Shortest Vector Problem (SVP) in a special class of lattices, namely NTRU convolutional modular lattices, \mathcal{L}_h^{NTRU} . SVP is one of the well-known computational lattice problems.

Definition 2.1. (SVP (Galbraith, 2012)) Given a basis matrix B for lattice \mathcal{L} , compute a shortest non-zero vector $u \in \mathcal{L}(B)$ such that ||u|| is minimal.

Specifically, the security of NTRUEncypt is based on the difficulty of finding reasonably shortest vectors $[f,g] = [f_0, f_1, \ldots, f_{N-1}, g_0, g_1, \ldots, g_{N-1}]$ in \mathcal{L}_h^{NTRU} that is defined by

$$\mathcal{L}_{h}^{NTRU} = \begin{pmatrix} 1 & h \\ 0 & q \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 & h_{0} & h_{1} & \cdots & h_{N-1} \\ 0 & 1 & \cdots & 0 & h_{N-1} & h_{0} & \cdots & h_{N-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & h_{1} & h_{2} & \cdots & h_{0} \\ \hline 0 & 0 & \cdots & 0 & q & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & q & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & q \end{pmatrix} \subset \mathbb{Z}^{2N}$$

where $h(X) \equiv g(X)/f(X) \pmod{q}$.

2.2 Construction of NTRUEncrypt

The construction of NTRUEncrypt can be described by the following phases.

I. Parameter Creation

The creation of parameter divides into two parts which are the creation of parameter (N, p, q) and the creation of spaces L_f, L_g, L_{φ} and L_m . Parameter (N, p, q) consists of the parameter N that represents the degree of R and the parameters p and q that uses the reduction of coefficients of R. Next, space $L_f = L(d_f, d_f - 1), L_g = L(d_g, d_g)$ and $L_{\varphi} = L(d, d)$ are obtained from the set of ternary polynomial

$$L(d_1, d_2) = \left\{ \begin{array}{l} d_1 \ coefficients \ equal \ to \ 1, \\ d_2 \ coefficients \ equal \ to \ -1, \\ all \ other \ coefficients \ equal \ to \ 0 \end{array} \right\}$$

Whereas space L_m is obtained from the space

$$L_m = \left\{ m \in R \text{ has coefficients lying between } -\frac{p-1}{2} \quad and \quad \frac{p-1}{2} \right\}.$$

II. Key Generation

The generation of keys includes the generation of private keys and a public key. To be more specific, the private keys are generated by polynomial $g(X) \in L_g$ and polynomial $f(X) \in L_f$ where f must be invertible in modulo p and q, and its inverses, that is, F_p and F_q satisfying the following:

$$F_p(X) * f(X) = f_p^{-1}(X) * f(X) \equiv 1 \pmod{p},$$

and

$$F_q(X) * f(X) = f_q^{-1}(X) * f(X) \equiv 1 \pmod{q},$$

respectively. While, the public key is generated by polynomial $h(X) = F_q(X) * g(X) = f_q^{-1}(X) * g(X) \pmod{q}$.

III. Encryption

The encryption phase involves the use of public key h in the calculation of encrypted message $e(X) = p\varphi(X)*h(X)+m(X) \pmod{q}$ where polynomial φ is a random polynomial in L_{φ} and polynomial m is a message in L_m . The mod q here means the coefficients are reducing into the interval [-q/2, q/2].

IV. Decryption

The decryption phase involves the aid of temporary polynomial a in the recovery of the message m from the encrypted message e by using the private key

f. Firstly, calculate a temporary polynomial $a(X) = f(X) * e(X) \pmod{q}$. Next, compute $F_p(X) * a(X) = f_p^{-1}(X) * a(X) = m(X) \pmod{p}$ to recover the message m with the mod p here means the coefficients are reducing into the interval [-p/2, p/2].

In the decryption process, the calculation of temporary polynomial a yields the inequality $p\varphi(X) * g(X) + f(X) * m(X)$ which lies in the interval of [-q/2, q/2]. Indeed, $\|p\varphi(X) * g(X) + f(X) * m(X)\|_{\infty} = \max_{1 \le i \le N} \{p\varphi_i(X) * g_i(X) + f_i(X) * m_i(X)\} - \min_{1 \le i \le N} \{p\varphi_i(X) * g_i(X) + f_i(X) * m_i(X)\}$. Therefore, when given by

$$\|p\varphi(X) * g(X) + f(X) * m(X)\|_{\infty} \le q$$
, (the wrap failure)

or

$$\left\|p\varphi(X)\ast g(X)+f(X)\ast m(X)\right\|_{\infty}>q,\quad (\text{the gap failure})$$

occurs, the decryption process is failing to work. But the decryption process is working properly when $\|p\varphi(X) * g(X) + f(X) * m(X)\|_{\infty} < q$.

The construction of NTRUEncrypt can be simply illustrated by the following example. Consider the parameter (N, p, q) = (7, 3, 43) and the following polynomials:

$$f(X) = X^{6} - X^{4} + X^{2} - X + 1 \in L(3, 2),$$

$$g(X) = X^{6} - X^{4} - X^{2} + X \in L(2, 2),$$

$$\varphi(X) = X^{6} + X^{5} - X^{3} - 1 \in L(2, 2),$$

$$m(X) = X^{5} + X^{4} - X^{3} - X + 1.$$

Then the inverses of f and the public key h are given by

$$F_q(X) = 8X^6 + 25X^5 + 11X^4 + 30X^3 + 42X^2 + 9X + 5 \in R_{43},$$

$$F_p(X) = 2X^6 + X^4 + X^3 + 2X^2 + 2X + 2 \in R_3,$$

$$h(X) = 20X^6 + 23X^5 + 8X^4 + 36X^3 + 9X^2 + 28X + 5 \pmod{43}$$

For the encryption, the calculation of encrypted message e yield

$$e(X) = 17X^{6} + 23X^{5} + 22X^{4} + 12X^{3} + 2X^{2} + 24X + 30 \pmod{43}.$$

For the decryption, firstly calculate a temporary polynomial a as

$$a(X) = X^{6} + 6X^{5} + 5X^{4} + 39X^{3} + 40X^{2} + 34X + 5 \pmod{43},$$

and center-lifting it modulo 43 obtain

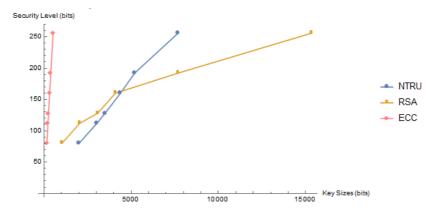
center - lift of
$$a(X) = X^6 + 6X^5 + 5X^4 - 4X^3 - 3X^2 - 9X + 5 \pmod{43}$$
.

where its coefficients are chosen from $\{-21, -20, \dots, 20, 21\}$. Next, compute

$$F_p(X) * a(X) = X^5 + X^4 + 2X^3 + 2X + 1 \pmod{3},$$

and center-lifting it modulo 3 with its coefficients are chosen from $\{-1, 0, 1\}$ to recover the message, $m(X) = X^5 + X^4 - X^3 - X + 1 \pmod{3}$.

2.3 Comparison with Other Public-Key Cryptosystems


NTRU is the fastest public-key cryptosystem among that of other cryptosystems. To verify this fact, a comparison are made between NTRU and RSA in terms of encryption and decryption execution timings for different text sizes.

Text sizes	NTRU		RSA	
(bits)	Encryption	Decryption	Encryption	Decryption
128	0.0000001	0.0000001	0.0549	0.0549
265	0.0000001	0.05490	0.1098	0.1098
512	0.05490	0.05490	0.2197	0.1648
1024	0.10989	0.05490	0.3846	0.3296
2048	0.27472	0.05490	0.7142	0.6593
5120	0.65934	0.16484	1.7032	1.7032
10240	1.31868	0.36100	3.4020	3.4020

Table 1: NTRU and RSA encryption and decryption execution timings (Challa and Pradhan, 2007).

Table 1 above indicates that the execution timings of NTRU are much shorter than the execution timings of RSA for both encryption and decryption which means that NTRU is more speedy than RSA. Therefore, NTRU is proven to be faster than RSA and this also implies that NTRU (possible) to be the fastest cryptosystem among that of other cryptosystems.

Furthermore, another comparison will be made between NTRU and RSA together with ECC in terms of public key sizes. This comparison is made from some lowest security level to some higher security level, which is at 80, 122, 128, 160, 192 and 256 bits security level (Howgrave-Graham et al., 2005). In general, the minimum for the lowest security level is recommended at 112 bits instead of at 80 bits because 112 bits security level offers stronger security than 80 bits security level.

Figure 1: Graph security level versus public key sizes for NTRU, RSA, and ECC.

Figure 1 above shows that among these cryptosystems, ECC is having the best performance and NTRU is having the worst performance. Despite it, the performance of NTRU become better when the security level is getting higher.

Other than that, NTRU can be a lattice-based alternative to RSA and ECC because the lattices can become the best replacement for factorization and elliptic curves in the structure of the public-key cryptosystem for security purposes. Furthermore, the advantage of NTRU being a lattice-based cryptosystem is its resistance to quantum computer-based attacks compared to RSA and ECC which are likely to fail when implemented on quantum computers.

3 NTRUENCRYPT VARIANTS

Recall that NTRU-1998 is the improved version of NTRU-1996 due to a lack of information on the security proof and is also known as NTRUEncrypt. NTRU-Encrypt (or NTRU-1998) has been considered as the main reference for those who intend to study NTRU. In the interest of this fact, the investigations were been carried out on NTRUEncrypt to improve its security as well as its performances. There are various NTRUEncrypt variants proposed over the past 20 years. The following table summarizes those NTRUEncrypt variants.

Year	Name of	Ring-based structure	Description
	variants		
2002	NTRU with non- invertible	$\frac{\mathbb{Z}[X]}{X^N - 1}$	NTRU with non-invertible poly- nomials (Banks and Shparlinski, 2002) extends NTRUEncrypt to non-invertible polynomial as a
	polyno-		way to overcome the problem of
	mials		finding an invertible polynomial
			in NTRUEncrypt.
2002	CTRU	$\frac{\mathbb{F}_2[T][X]}{X^N - 1}$	CTRU (Gaborit et al., 2002) de- signs NTRUEncrypt over binary finite field \mathbb{F}_2 which is secure against Popov normal form at- tack but it was completely inse- cure against linear algebra-based attacks. Therefore, CTRU has a non-commutative and secure vari-
			ant, namely NETRU (Atani et al.,
			2018).

		Table 2. (Con	tinued)
2005	MaTRU	$\frac{M_k(\mathbb{Z})[X]}{X^n - I_{k \times k}}$	MaTRU (Coglianese and Goi,
		h A h	2005) operates in the ring of k by
			k matrices of a polynomial in R
			with the linear transformation of
			two-sided matrix multiplication.
			For $nk^2 = N$, MaTRU is having
			the same number of bits per mes-
			sage as NTRUEncrypt.
2006	GNTRU	$\frac{\mathbb{Z}[i][X]}{X^N - 1}$	GNTRU (Kouzmenko, 2006)
			proposes NTRUEncrypt over the
			ring of Gaussian integers $\mathbb{Z}[i] =$
			$\Big\{a+ib: a, b \in \mathbb{Z}, i^2 = -1\Big\}.$
			GNTRU is slightly more secure
			to lattice attack than NTRUEn-
			crypt but it still not as efficient as
			NTRUEncrypt.
2008	Matrix	$\frac{M(\mathbb{Z})[X]}{X^n - I}$	Matrix NTRU (Nayak et al.,
	NTRU		2008) represents NTRUEncrypt
			in the matrix formulation form.
			This is because the matrix formu-
			lation form is proven more secure
			when the matrix is invertible or its
			determinant exists. Also, it can
			ensure that the encryption and de-
			cryption working properly with-
			out having to fix the choice of the
			parameters p and q .
2008	GB-	$\frac{\mathbb{Z}[X,Y]}{(X^N-1,Y^N-1)}$	GB-NTRU (Caboara et al., 2008)
	NTRU		generalizes NTRUEncrypt to
			multivariate polynomial, that
			is, a bivariate polynomial in its
			system.

		Table 2. (Con	tinued)
2009	NNRU	$\frac{M_k(\mathbb{Z})[X]}{X^n - I_{k \times k}}$	NNRU (Vats, 2009) operates in
		$-\kappa \times \kappa$	the ring of k by k matrices of a
			polynomial in R . NNRU is said
			to be secure to lattice-based at-
			tack compared to NTRUEncrypt.
			By setting $N = n(k^2)$, NTRU-
			Encrypt and NNRU are having the
			same size of plaintext blocks.
2010	GTRU	$\frac{\mathcal{D}[X]}{X^N - 1}$	GTRU (Malekian and Zakerol-
2010	onte	$X^{N} - 1$	hosseini, 2010a) generalizes
			NTRUEncrypt over some broader
			algebra than Dedekind domain,
			\mathcal{D} . The underlying algebra of
			GTRU can be non-commutative
			(quaternion algebra or algebra
			of dimension four) or even non-
			associative (octonion algebra or
			algebra of dimension eight).
2010	OTRU	$\frac{\mathbb{Z}[X]}{X^N-1}$	OTRU (Malekian and Zakerol-
2010	UIKU	$\overline{X^N-1}$	hosseini, 2010b) proposes the oc-
			tonion version of NTRUEncrypt.
			The operation of OTRU involve
			a non-associative octonion alge-
			bra, $\mathbb{A} := \left\{ a_0(x) + \sum_{i=1}^7 a_i(x) \right\}$
			$e_i a_0(x), \dots, a_7(x) \in R \}$ where
			$R = \mathbb{Z}[X]/(X^N - 1)$. OTRU is
			$R = \mathbb{Z}[X]/(X = 1)$. Of RO is faster than NTRUEncrypt.
2011	OTDU	(-1, -1)	
2011	QTRU	$\frac{(-1,-1)}{\mathbb{Z}[X]/(X^N-1)}$	QTRU (Malekian et al., 2011)
			presents the quaternion version
			of NTRUEncrypt. The opera- tion of QTRU involve a non-
			commutative quaternion algebra,
			$\mathbb{H} = \{a + ib + jc + kd a, b, c, d \in \mathbb{Z}, i^2 = j^2 = k^2 = ijk = -1\}.$
			Z, i = j = k = ijk = -1. QTRU is more efficient and se-
			cure than NTRUEncrypt.
			cure man in i KOEncrypt.

		Table 2. (Con	
2015	DBTRU	$\left \frac{GF(2)[x]}{x^N-1} \right N$	DBTRU (Thang and Binh,
			2015) designs NTRUEncrypt
			over the ring of dual spe-
			cial kinds of binary truncated
			polynomial with positive in-
			teger coefficients, $R_N[x] =$
			$GF(2)[x]/(x^N - 1) N \in Z^+.$
			DBTRU is having better theoret-
			ical performances and security
			than NTRUEncrypt.
2015	ETRU	$\frac{\mathbb{Z}[\omega][X]}{X^N - 1}$	ETRU (Jarvis and Nevins, 2015)
		A -1	presents NTRUEncrypt over
			the ring of Eisenstein integers,
			$\mathbb{Z}[\omega] = \left\{ a + \omega b a, b \in \mathbb{Z}, i^2 = \right\}$
			$-1, \omega = e^{2i\frac{\pi}{3}}$. ETRU is having
			smaller key sizes than NTRU-
			Encrypt and it also faster than
			NTRUEncrypt. In additions, the
			properties of ETRU have been
			used by the ILTRU (Karbasi and
			Atani, 2015) in its security proof
			that based on ideal lattices under
			an assumption of a worst-case
			hardness of standard R-SIS
			(Ring Small Integer Solution)
			and R-LWE (Ring Learning with
			<i>Errors</i>) problem.
2015	GR-	$\frac{\mathbb{Z}[G][X]}{X^N - 1}$	GR-NTRU (Yasuda et al., 2015)
	NTRU		derives NTRUEncrypt over group
			ring, $\mathbb{Z}[G] = \left\{ \sum_{g \in G} a_g[g] a_g \in \right\}$
			$\mathbb{Z}(\forall g \in G)$ }. The security com-
			parison shows that GR-NTRU is
			less secure than NTRUEncrypt.
		I	

		Table 2. (Con	tinued)
2016	BITRU	$\frac{\mathbb{Z}[X]}{X^N - 1}$	BITRU (Alsaidi and Yassein,
		A1	2016) proposes NTRUEncrypt
			over binary algebra, $BN_R =$
			$\{a + bj j^2 = 1, a, b \in \mathbb{R}\}$. BI-
			TRU is a multidimensional cryp-
			tosystem with two public keys h
			and k where it can encrypt two
			independent messages from two
			different origins. BITRU is hav-
			ing better security than NTRUEn-
			crypt.
2016	CQTRU	$\frac{A[X]}{X^N - 1}$	CQTRU (Alsaidi et al., 2016)
2010	CQIKU	$\overline{X^N - 1}$	presents NTRUEncrypt over com-
			mutative quaternion ring, $A =$
			$ \{ a + bi + cj + dk a, b, c, d \in \\ K, i^2 = a, j^2 = b, ij = k \}. $
			K, i = a, j = b, ij = k. CQTRU can encrypt and decrypt
			four messages at the same time
			-
			and resistant to the alternate key attack, brute force attack and lat-
			-
			tice attack. CQTRU is more se-
2016		$\mathbb{Z}[X]$	cure than NTRUEncrypt.
2016	HXDTRU	$\frac{X_{[1,1]}}{X^N-1}$	HXDTRU (Yassein and Alsaidi,
			2016) derives NTRUEncrypt over
			hexadecnion algebra, $\Psi = \{r_0 +$
			$\sum_{i=1}^{15} r_i x_i r_0, r_1, \dots, r_{15} \in K \}$ where $K = \mathbb{Z}[X]/(X^N - 1).$
			where $K = \mathbb{Z}[X]/(X^N - 1)$.
			HXDTRU with N dimension is
			sixteen times faster than NTRU-
			Encrypt with $16N$ dimension.
2016	BTRU	$\frac{B[x]}{x^N-1}$	BTRU (Thakur and Tripathi,
		w 1	2016) extends NTRUEncrypt
			over a rational field in variable α
			or $Q[\alpha] = B$. BTRU is faster and
			secure than NTRUEncrypt.
1	I		**

2016KTRU $\frac{\mathbb{Z}[\tau][X]}{X^{N}-1}$ KTRU (Thakur et al., 2016 signs NTRUEncrypt over the of Kleinian integers, $\mathbb{Z}[\tau] =$ $m + n\tau : q^2 = m^2 + 2i$ $mn, \tau = (1 + i\sqrt{7})/2, m,$ Q }. The ring $\mathbb{Z}[\tau]$ is said to a higher significance than the of integers, \mathbb{Z} .2016mini- NTRU $\frac{\mathbb{Z}[X]}{X^N-1}$ mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses sm parameter sets based on binary representation. How those parameter sets are inset for practical application.2017ITRU $\frac{(\mathbb{Z}/n\mathbb{Z})[X]}{X^N-1}$ ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the parison in terms of key	ring $\{q = n^2 + n \in n \in n \in n \}$ have ring al., on of haller the
2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} signs NTRUEncrypt over the of Kleinian integers, $\mathbb{Z}[\tau] = -m + n\tau$: $ q^2 = m^2 + 2\pi$ $mn, \tau = (1 + i\sqrt{7})/2, m,$ Q . The ring $\mathbb{Z}[\tau]$ is said to a higher significance than the of integers, \mathbb{Z} .2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses sm parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the observation of the set of th	$\begin{cases} q = i^2 + i^2 $
2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} of Kleinian integers, $\mathbb{Z}[\tau] = m^2 + 2\pi$ $m, \tau = (1 + i\sqrt{7})/2, m,$ Q . The ring $\mathbb{Z}[\tau]$ is said to a higher significance than the of integers, \mathbb{Z} .2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses surparameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the observation of the set of	$\begin{cases} q = i^2 + i^2 $
2016 mini- NTRU $ \begin{array}{c c} \mathbb{Z}[X] \\ \mathbb{Z}[X] \\$	$n^2 + n \in n$ have ring al., on of aller the
2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} Provides a mini $\mathbb{Z}[\tau]$ is said to a higher significance than the of integers, \mathbb{Z} .2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses sm parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the observed over the set of the se	have ring al., on of aller the
2016mini- NTRU $\mathbb{Z}[X]$ $X^N - 1$ a higher significance than the of integers, \mathbb{Z} .2016mini- NTRU $\mathbb{Z}[X]$ $X^N - 1$ mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses sm parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ $X^N - 1$ ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the observation	al., al., on of aller the
2016mini- NTRU $\mathbb{Z}[X]$ X^{N-1} of integers, \mathbb{Z} . mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses sur parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the other sets are insection.	al., on of aller the
2016mini- NTRU $\mathbb{Z}[X]$ \mathbb{X}^{N-1} mini-NTRU (Gaithuru et 2016) provides a mini version NTRUEncrypt that uses sur parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ \mathbb{X}^{N-1} ITRU (Gaithuru and Salleh, 2 	on of aller the
NTRU2016) provides a mini version NTRUEncrypt that uses sur parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} ITRU (Gaithuru and Salleh, 2 	on of aller the
NTRU2016) provides a mini version NTRUEncrypt that uses sur parameter sets based on binary representation. How those parameter sets are insection for practical application.2017ITRU $\frac{(\mathbb{Z}/n\mathbb{Z})[X]}{X^{N}-1}$ ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over 	aller the
2017 ITRU $\frac{(\mathbb{Z}/n\mathbb{Z})[X]}{X^{N}-1}$ parameter sets based on binary representation. How those parameter sets are inseries for practical application. ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo <i>n</i> that noted by $\mathbb{Z}/n\mathbb{Z}$. As the other sets are inseries of the set of	the
2017ITRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} binary representation. How those parameter sets are insection for practical application.1TRU $(\mathbb{Z}/n\mathbb{Z})[X]$ X^{N-1} ITRU (Gaithuru and Salleh, 2 	
2017 ITRU $\frac{(\mathbb{Z}/n\mathbb{Z})[X]}{X^N-1}$ those parameter sets are inserved for practical application. ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo <i>n</i> that noted by $\mathbb{Z}/n\mathbb{Z}$. As the	ever,
2017 ITRU $\frac{(\mathbb{Z}/n\mathbb{Z})[X]}{X^{N}-1}$ for practical application. ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo <i>n</i> that noted by $\mathbb{Z}/n\mathbb{Z}$. As the other set of the set of	
2017 ITRU $\frac{(\mathbb{Z}/n\mathbb{Z})[X]}{X^{N}-1}$ ITRU (Gaithuru and Salleh, 2 presents NTRUEncrypt over ring of integers modulo <i>n</i> that noted by $\mathbb{Z}/n\mathbb{Z}$. As the o	cure
presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the	
presents NTRUEncrypt over ring of integers modulo n that noted by $\mathbb{Z}/n\mathbb{Z}$. As the	017)
noted by $\mathbb{Z}/n\mathbb{Z}$. As the	the
	t de-
parison in terms of key	
	•
eration, ITRU is only req	
$O(N^2)$ whereas NTRUEncry	
required $O\left(N^2(log^2p + log)\right)$	
2017 SQTRU $\left \frac{(-1,-1)}{\mathbb{Z}[x]/(x^N-1)} \right $ SQTRU (Thakur and Trip	
2017) proposes NTRUEn	
over coquaternions (also kr	
as spit quaternion algebra),	
$\begin{cases} q &= q_0 + q_1 i + q_2 \end{cases}$	j +
$\left\{ q_{3}k; q_{0}, q_{1}, q_{2}, q_{3} \in R \right\}$ w	here
$R = \mathbb{Z}[x]/(x^N - 1)$. SQ	
can reduce the decryption fa	
through its non-commutative	
ture and due to its multidi	
sional nature, SQTRU is more	men-
cure to lattice-based attack	men- re se-
NTRUEncrypt.	men- re se-

		Table 2. (Con	tinuea)
2018	PairTRU	$\frac{M(k,\mathbb{Z}\times\mathbb{Z})[x]}{(I_{k\times k},I_{k\times k})x^N-(I_{k\times k},I_{k\times k})}$	PairTRU (Karbasi et al., 2018) es-
			tablishes NTRUEncrypt over the
			non-commutative matrix ring of
			$k \times k$ matrices of polynomials for
			$\mathbb{Z} \times \mathbb{Z}$. PairTRU is more secure
			to linear algebra-based attack and
			lattice-based attack than NTRU-
			Encrypt.
2018	D-	$\frac{\mathbb{Z}[X]}{X^N - 1}$	D-NTRU (Wang et al., 2018)
	NTRU	71 I	uses NTRUEncrypt as a reference
			to introduce its definition of the
			truncated polynomial ring. D-
			NTRU also uses another cryp-
			tosystem, namely C-NTRU as an
			aid to complete its security proof
			of IND-CPA (Indistinguishability
			under Chosen Plaintext Attack).
			D-NTRU is more efficient than
			all the provably secure NTRUEn-
			crypt variants.
2018	DTRU1	$\frac{\mathbb{D}[X]}{X^N - 1}$	DTRU1 (Camara et al., 2018) de-
			signs NTRUEncrypt over the ring
			of Dual Integers (or the ring with
			zero divisors), $\mathbb{D} = \mathbb{Z} + \epsilon \mathbb{Z}, \epsilon^2 =$
			0. At the equivalent security
			level, DTRU1 is less efficient than
			NTRUEncrypt.

		<i>Tuble 2.</i> (Con	
2018	BQTRU	$\frac{(-1,-1)}{\mathbb{Z}[x,y]/(x^n-1,y^n-1)}$	BQTRU (Bagheri et al., 2018)
			generalizes NTRUEncrypt to bi-
			variate polynomial over quater-
			nion algebras, $\mathbb{H} = \{s_0 + s_1 i +$
			$s_2j+s_3k:s_0,s_1,s_2,s_3 \in \mathbb{R}$. At
			an equivalent set of the parameter,
			BQTRU more secure to lattice-
			based attack, brute force attack
			and Gentry attack than NTRUEn-
			crypt. BQTRU also has a smaller
			public key size than NTRUEn-
			crypt.
2019	NTRU-	$\frac{\mathbb{Z}_2[X]}{X^N - 1}$	(Gu et al., 2019) proposes an
	type	7 1 1	NTRU-type public-key cryp-
	public-		tosystem over a binary field, \mathbb{Z}_2
	key		where its security is based on
	cryp-		the difficulty of decisional un-
	tosys-		balanced sparse polynomial ratio
	tem		(DUSPR) problem. The NTRU-
			type public-key cryptosystem is
			relatively practical and efficient.

Table 2. (Continued)

Table 2: NTRUEncrypt Variants.

4 CONCLUSION

The NTRUEncrypt variants discussed here were constructed based on several different type of algebraic structures. Deviating from the original NTRUEncrypt which was based on polynomial ring of \mathbb{Z} , to some other types of rings, algebra and vector spaces. Indeed, with different established properties for each variant has offered in some ways, a more secure and efficient scheme as compared to NTRUEncrypt. The data obtained from the survey also showed that NTRU and its variants can be used as an alternative method to replace the RSA in future. Looking at the prospect of lattice-based public-key cryptosystem, as a better resolution to quantum computer-based attacks, further

revisions on NTRU and its variants are expected to take place in an extensive manner. Therefore, this paper provides a good start and reference to NTRU for future development.

ACKNOWLEDGMENTS

The work presented here was supported in part by a research university grant from Universiti Sains Malaysia, account no: 1001/PMATHS/8011121

REFERENCES

- Alsaidi, N. M. and Yassein, H. R. (2016). Bitru: Binary version of the ntru public key cryptosystem via binary algebra. *International Journal of Advanced Computer Science & Applications*, 1:1–6.
- Alsaidi, N. M. G., Sadiq, A. T., and Majid, A. A. (2016). Cqtru: A commutative quaternions rings based public key cryptosystem. *Engineering and Technology Journal*, 34(6 Part (B) Scientific):901–911.
- Atani, R. E., Atani, S. E., and Karbasi, A. H. (2018). Netru: A noncommutative and secure variant of ctru cryptosystem. *The ISC International Journal of Information Security*, 10(1):45–53.
- Bagheri, K., Sadeghi, M. R., and Panario, D. (2018). A non-commutative cryptosystem based on quaternion algebras. *Designs, Codes and Cryptography*, 86(10):2345–2377.
- Banks, W. D. and Shparlinski, I. E. (2002). A variant of ntru with noninvertible polynomials. In *International Conference on Cryptology in India*, pages 62–70, Berlin Heidelberg. Springer.
- Caboara, M., Caruso, F., and Traverso, C. (2008). Gröbner bases for public key cryptography. In *Proceedings of the twenty-first international symposium on Symbolic and algebraic computation*, pages 315–324, Hagenberg Austria. ACM.

- Camara, M. G., Sow, D., Sow, D., and et Informatique, E. D. D. (2018). Dtru1: First generalization of ntru using dual integers. *International Journal of Algebra*, 12(7):257–271.
- Challa, N. and Pradhan, J. (2007). Performance analysis of public key cryptographic systems rsa and ntru. *International Journal of Computer Science and Network Security*, 7(8):87–96.
- Coglianese, M. and Goi, B. M. (2005). Matru: A new ntru-based cryptosystem. In et al., S. M., editor, *International Conference on Cryptology in India*, pages 232–243, Berlin Heidelberg. Springer.
- Coppersmith, D. and Shamir, A. (1997). Lattice attacks on ntru. In Fumy, W., editor, *International Conference on the Theory and Applications of Cryptographic Techniques*, pages 52–61, Berlin Heidelberg. Springer Verlag.
- Diffie, W. and Hellman, M. (1976). New directions in cryptography. *IEEE* transactions on Information Theory, 22(6):644–654.
- ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. *IEEE transactions on information theory*, 31(4):469–472.
- Gaborit, P., Ohler, J., and Solé, P. (2002). Ctru, a polynomial analogue of ntru. *Institut National de Recherche en Informatique et en Automatique (INRIA)*, Theme 2(4621):1–12.
- Gaithuru, J. N. and Salleh, M. (2017). Itru: Ntru-based cryptosystem using ring of integers. *International Journal of Innovative Computing*, 7(1):33–38.
- Gaithuru, J. N., Salleh, M., and Mohamad, I. (2016). Mini n-th degree truncated polynomial ring (mini-ntru): A simplified implementation using binary polynomials. In 2016 IEEE 8th International Conference on Engineering Education (ICEED), pages 270–275. IEEE.
- Galbraith, S. D. (2012). *Mathematics of public key cryptography*. Cambridge University Press.
- Gu, Y., Xie, X., and Gu, C. (2019). A new ntru-type public-key cryptosystem over the binary field. *Computers, Materials & Continua*, 60(1):305–316.

- Hoffstein, J. (1996). Ntru: a new high speed public key cryptosystem. presented at the rump session of Crypto 96.
- Hoffstein, J., Pipher, J., and Silverman, J. H. (1998). Ntru: A ring-based public key cryptosystem. In *International Algorithmic Number Theory Symposium*, pages 267–288, Berlin Heidelberg. Springer.
- Howgrave-Graham, N., Silverman, J. H., and Whyte, W. (2005). Choosing parameter sets for ntruencrypt with naep and sves-3. In *Cryptographers Track at the RSA Conference*, pages 118–135, Berlin Heidelberg. Springer.
- Jarvis, K. and Nevins, M. (2015). Etru: Ntru over the eisenstein integers. *Designs, Codes and Cryptography*, 74(1):219–242.
- Karbasi, A. H. and Atani, R. E. (2015). Iltru: An ntru-like public key cryptosystem over ideal lattices. *IACR Cryptology ePrint Archive*, 2015:549– 557.
- Karbasi, A. H., Atani, R. E., and Atani, S. E. (2018). Pairtru: Pairwise noncommutative extension of the ntru public key cryptosystem. *International Journal of Information Security Science*, 1(1):11–19.
- Koblitz, N. (1987). Elliptic curve cryptosystems. *Mathematics of computation*, 48(177):203–209.
- Kouzmenko, R. (2006). Generalizations of the NTRU Cryptosystem. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. Diploma Project.
- Malekian, E. and Zakerolhosseini, A. (2010a). Ntru-like public key cryptosystems beyond dedekind domain up to alternative algebra. In *Transactions on computational science X*, pages 25–41. Springer, Berlin Heidelberg.
- Malekian, E. and Zakerolhosseini, A. (2010b). Otru: A non-associative and high speed public key cryptosystem. In 2010 15th CSI International Symposium on Computer Architecture and Digital Systems, pages 83–90. IEEE.
- Malekian, E., Zakerolhosseini, A., and Mashatan, A. (2011). Qtru: quaternionic version of the ntru public-key cryptosystems. *The ISC International Journal of Information Security*, 3(1):29–42.

- McEliece, R. J. (1978). A public-key cryptosystem based on algebraic. *Coding Thv*, 4244:114–116.
- Miller, V. S. (1985). Use of elliptic curves in cryptography. In Wiliams,
 H. C., editor, *Conference on the theory and application of cryptographic techniques*, pages 417–426, Berlin Heidelberg. Springer-Verlag.
- Nayak, R., Sastry, C. V., and Pradhan, J. (2008). A matrix formulation for ntru cryptosystem. In 2008 16th IEEE International Conference on Networks, pages 1–5. IEEE.
- Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2):120–126.
- Thakur, K. and Tripathi, B. P. (2016). Btru, a rational polynomial analogue of ntru cryptosystem. *International Journal of Computer Applications*, 145(12):22–24.
- Thakur, K. and Tripathi, B. P. (2017). A variant of ntru with split quaternions algebra. *Palestine Journal of Mathematics*, 6(2):598–610.
- Thakur, K., Tripathi, B. P., and Yadav, M. R. (2016). Ktru: Ntru over the kleinian integers. *Journal of international academy of physical sciences*, 20(3):177–183.
- Thang, C. M. and Binh, N. (2015). Dbtru, a new ntru-like cryptosystem based on dual binary truncated polynomial rings. In 2015 2nd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS), pages 11–16. IEEE.
- Vats, N. (2009). Nnru, a noncommutative analogue of ntru. *arXiv preprint arXiv:0902.1891*, pages 1–14.
- Wang, B., Lei, H., and Hu, Y. (2018). D-ntru: More efficient and average-case ind-cpa secure ntru variant. *Information Sciences*, 438:15–31.
- Yassein, H. R. and Alsaidi, N. (2016). Hxdtru cryptosystem based on hexadecnion algebra. In 5th International Cryptology and Information Security Conference, pages 1–14.

Yasuda, T., Dahan, X., and Sakurai, K. (2015). Characterizing ntru-variants using group ring and evaluating their lattice security. *IACR Cryptology ePrint Archive*, 2015:1170–1186.