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ABSTRACT

The modular square root problem has a special property of the hav-
ing computational equivalent to a well-known hard mathematical prob-
lem namely integer factorization problem. The proposed Rabin-p Key
Encapsulation Mechanism is built upon the said problem as its source
of security, aiming for efficient and practical modular square root-based
cryptosystem of which accompanied with the following properties; 1)
improves the performance without plaintext padding mechanisms or send-
ing extra bits during encryption and decryption processes, 2) the plain-
text is uniquely decrypted without decryption failure, 3) improve de-
cryption efficiency by using only one modular exponentiation, 4) a de-
cryption key using only a single prime number, 5) sufficiently large
plaintext space, 6) appropriate plaintext-ciphertext expansion ratio, 7)
implementable on software and hardware with ease, and 8) achieves
IND-CPA security.
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1 INTRODUCTION

1.1 Background

The Rabin encryption scheme Rabin (1979) is one of an existing workable
asymmetric cryptosystem that comes with nice cryptographic properties. For
instance, it has low-cost encryption of which the Rabin encryption is rela-
tively fast to encrypt compared to the widely commercialized RSA cryptosys-
tem Rivest et al. (1978), and it has been proven to be as difficult as the integer
factorization problem. On the other hand, the decryption of Rabin’s scheme
produces four possible answers, which only one is correct. This four-to-one
decryption setting of the Rabin decryption could lead to a decryption failure
scenario since no indicator for selecting the correct plaintext is given.

Theoretically speaking, it is such a waste to abandon a cryptosystem that
possesses nice features such as the Rabin cryptosystem. Hence attempts were
made by numerous researchers with the objective to turn the Rabin cryptosys-
tem to be as practical and implementable as the RSA cryptosystem. Broadly
speaking, all the previous attempts made seem to employ one or more addi-
tional features in order to obtain a unique decryption result, but at the same
time may have a small probability for decryption failure. One of the ways to
accomplish this is through manipulation of some mathematical objects such as
the role of the Jacobi symbol or the Dedekind’s sums theorem. Also, it can
be done by designing an encryption function with a special message structure.
Yet, at the same time all the designs lose the computational advantage of the
original Rabin’s encryption over the RSA cryptosystem.

In order to engage this problem and to overcome all the previous draw-
backs of Rabin’s original design and its variants, we propose the Rabin-p Key
Encapsulation Mechanism, provided with theoretical analysis, perfomance mea-
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surement and robust implementation. We revisit the Rabin cryptosystem and
then aspire to furnish a new design aiming for efficient, secure and practical
Rabin-like cryptosystem. In our design, we use the modulus N = p2q and
we restrict the plaintext to be less than p2. Hence, to decrypt correctly, it suf-
fices to apply an efficient algorithm that solves the square root of quadratic
congruence modulo p instead of modulo N = p2q.

1.2 Design Rationale

In designing the Rabin-p Key Encapsulation Mechanism, the following are the
main criteria that were taken into consideration:

1. improves the performance without plaintext padding mechanisms or send-
ing extra bits during encryption and decryption processes

2. the plaintext is uniquely decrypted without decryption failure

3. improve decryption efficiency by using only one modular exponentiation

4. a decryption key using only a single prime number

5. sufficiently large plaintext space

6. appropriate plaintext-ciphertext expansion ratio

7. implementable on software and hardware with ease

8. achieves IND-CPA security.

1.3 Design Principle

The design principle to overcome the drawbacks of the original Rabin cryp-
tosystem and all its variants are outlined as follows. Firstly, we put the con-
dition on the modulus to be used is of the type N = p2q. We note that such
modulus N = p2q is claimed to be no easier than factoring the conventional
modulus of N = pq Castagnos et al. (2009). We then impose restriction on
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the plaintext m and ciphertext c space as m ∈ Zp2 and c ∈ Zp2q, respectively.
From the plaintext-ciphertext expansion, such restriction leads to a system that
is not a length-preserving for the message.

Let m and c be the plaintext and ciphertext and c(m) be the function of c
taking m as its input. Say, for instance, the plaintext spaces and the ciphertext
spaces in the RSA cryptosystem are the same. Thus we denote the mapping for
the RSA cryptosystem as c(m) : Zpq −→ Zpq. Note that this situation could
be an advantage for the RSA scheme since RSA encryption has no message
expansion. This is, however, not true for all cryptosystems.

The size of a message m is determined by the size of its plaintext space.
Suppose we put a restriction on the size of such m. If the intended plaintext m
is merely the secret key needed for the use of a symmetric cryptosystem, then
such key is indeed a short message. For example, the plaintext-ciphertext map-
ping for Okamoto-Uchiyama cryptosystem Okamoto and Uchiyama (1998) is
c(m) : Zp −→ Zp2 , Pailier cryptosystem Paillier (1999) and the cryptosystem
proposed by Galindo et al. (2002) is c(m) : Zpq −→ Z(pq)2 , Rabin-Boneh
Boneh (2001) mapping is c(m) : Z pq

2
−→ Zpq and the Rabin variant intro-

duced by Schmidt-Samoa (2006) is c(m) : Zpq −→ Zp2q.

Therefore, we note that the issue of losing the ability to encrypt a relatively
longerm is insignificant. Hence, we reason that, even imposing restrictions on
the plaintext space or to set a prefix message size would not be a hindrance for
designing a considerable efficient cryptosystem.

2 RABIN-P CRYPTOSYSTEM: THE DESIGN

In this section, we provide the details of the proposed cryptosystem namely
Rabin-p Cryptosystem. Rabin-p is named after the Rabin cryptosystem with
the additional p symbolizing that the proposed scheme only uses a single prime
p as the decryption key. This section is structured as follows. We first describe
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the Rabin-p key generation, encryption and decryption procedures. We then
provide the explanation of the Rabin-p decryption process.

2.1 System Parameters

The key generation algorithm of the Rabin-p cryptosystem (Algorithm 2.1)
produces two random and distinct primes p and q of the same length such that
p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

2.2 Rabin-p Key Generation Algorithm

The key generation algorithm then produces an integer N as a product N =
p2q, which is denoted as the public key. The private key is the prime p.

Algorithm 2.1 Rabin-p Key Generation Algorithm

Input: The size k of the security parameter
Output: The public key N = p2q and the private key p

1: Choose two random and distinct primes p and q such that 2k < p, q <
2k+1 satisfy p, q ≡ 3 (mod 4)

2: Compute N = p2q
3: Return the public key N and the private key p

2.3 Rabin-p Encryption Algorithm

To encrypt a plaintext, the Rabin-p encryption algorithm with the public key
N does the following.

Remark 2.1. The encryption algorithm (Algorithm 2.2) takes the plaintext
m < 22k−1 and compute c ≡ m2 (mod N). We observe that the plaintext m
is restricted to the range of m < 22k−1 = 22k

2 < p2

2 < p2. The output is the
ciphertext c.
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Algorithm 2.2 Rabin-p Encryption Algorithm
Input: The public key N
Output: A ciphertext c

1: Choose plaintext 0 < m < 22k−1 such that gcd(m,N) = 1
2: Compute c ≡ m2 (mod N)
3: Return the ciphertext c

2.4 Rabin-p Decryption Algorithm

To decrypt a ciphertext, the Rabin-p decryption algorithm with the private key
p does the following.

Algorithm 2.3 Rabin-p Decryption Algorithm
Input: A ciphertext c and the private key p
Output: The plaintext m

1: Compute w ≡ c (mod p)

2: Compute mp ≡ w
p+1
4 (mod p)

3: Compute i = c−mp
2

p

4: Compute j ≡ i
2mp

(mod p)
5: Compute m1 = mp + jp
6: If m1 < 22k−1, then return m = m1. Else, return m = p2 −m1

Remark 2.2. We observe that the decryption algorithm needs only a single
prime number as its key. Hence, only one modular exponentiation is taking
place during the decryption process. Such computational advantage would
positively affect the overall operations.

Remark 2.3. We reason that since our proposed scheme does not need to
carry out any CRT computation, thus the Novak’s attack is not applicable on
the Rabin-p cryptosystem (i.e. resilient against Novak’s attack).

2.5 Proof of Correctness for Rabin-p Decryption

This section explain why the Rabin-p decryption procedure works.
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Lemma 2.1. (Kumanduri and Romero, 1998). Let p be a prime number such
that p ≡ 3 (mod 4) and c an integer such that gcd(c, p) = 1. The congruence
c ≡ m2 (mod p) has either no solutions or exactly two solutions. If m1 is a
solution, then −m1 (mod p) is the other solution.

Lemma 2.2. (Kumanduri and Romero, 1998). Let p be a prime number such
that p ≡ 3 (mod 4) and c an integer such that gcd(c, p) = 1. The congruence
c ≡ m2 (mod p2) has exactly two solutions if c ≡ m2 (mod p) has exactly
two solutions.

Lemma 2.3. (Asbullah and Ariffin, 2016). Consider Lemma 2.2. Let c ≡ m2

(mod p2). Then m1 = mp + jp is a solution to c ≡ m2 (mod p2) where

mp ≡ c
p+1
4 (mod p), j ≡ i

2mp
(mod p) such that i = c−mp

2

p . Furthermore
m2 ≡ −m1 (mod p2) is the other solution.

Lemma 2.4. (Asbullah and Ariffin, 2016) Consider Lemma 2.3. If m1 and m2

are the two distinct integers solution for c ≡ m2 (mod p2), then m1 +m2 =
p2.

Lemma 2.5. (Asbullah and Ariffin, 2016) Letm1 andm2 be integers such that
m1+m2 = p2 with p2 is an odd integer. Then either m1 or m2 is less than p2

2 .

Theorem 2.1. Let c ≡ m2 (mod N) be the Rabin-p ciphertext. Then Algo-
rithm 2.3 is correct.

Proof. Suppose c ≡ m2 (mod N) be the Rabin-p ciphertext where N =
p2q, thus we have c − m2 ≡ 0 (mod N). Since p2 | N , then p2 | c − m2.
Algorithm 2.2 show that m < p2, therefore it is sufficient just solving for
c ≡ m2 (mod p2) which is efficiently solved using Lemma 2.3. In addition,
according to Lemma 2.2, there are exactly two distinct solution m1 and m2

satisfies c ≡ m2 (mod p2). From Lemma 2.4 we have m1 +m2 = p2. We
now show that the Algorithm 2.3 only produce a unique solution for m <

22k−1. Observe that the upper bound for m < p2

2 . Consider Lemma 2.5, then
we have either m1 or m2 is less than p2

2 such that m1 + m2 = p2 satisfy
m < 22k−1. Finally, we conclude that only one of m1 or m2 are less than p2

2
and will be outputted by Algorithm 2.3 as the unique m < 22k−1. �
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3 RABIN-P CRYPTOSYSTEM: THE ANALYSIS

This chapter discusses the hard problem that becomes the source of security for
the Rabin-p cryptosystem. In the following sections, we show that the problem
of solving the Rabin-p ciphertext is reduced to factoring N = p2q. Hence, in
conclusion, it proves that breaking the Rabin-p cryptosystem is indeed equiva-
lent to factoring N = p2q. We then extend our security analysis by discussing
some possible cryptanalysis, for instance; the continued fraction’s attack, the
Coppersmith’s theorems and the Novak’s attack.

3.1 Reduction to Factoring N = p2q

In this section, we show that if there exists an algorithm that can decrypt mes-
sage m from any random Rabin-p ciphertext, then such algorithm also be able
to factor N = p2q. We observe the following.

Theorem 3.1. Let N = p2q, m < 22k−1 and 22k−1 < m̂ < p2 such that
m+ m̂ = p2. Then gcd(m+ m̂,N) = p2.

Proof. Suppose 2k < p < 2k+1, then 22k < p2 < 22k+2, and 22k−1 < p2

2 <
22k+1. Suppose m < 22k−1, then from Lemma 2.5 there exists another integer
m̂ > 22k−1 such that m + m̂ = p2. Thus this implies p2 − m̂ = m < 22k−1.
Now, we determine the range of the m̂ such that p2 − m̂ < 22k−1. Then we
obtain the lower bound for m̂, of which

m̂ > p2 − 22k−1

> 22k − 22k−1

> 22k−1

and upper bounded by m̂ < p2. Take the gcd(m+ m̂,N), then we obtain p2.
Hence q = N

p2
. �

Remark 3.1. Theorem 3.1 implies that if there exists someone or an algo-
rithm that can decrypt the message m from the Rabin-p’s ciphertext, then that
someone must also be able to factor N = p2q.
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3.1.1 Algorithm for Factoring N = p2q

Note that the Algorithm 2.3 will output only the integer m < 22k−1. Hence,
if we generate an integer m̂ such that 22k−1 < m̂ < 22k, then we can build a
factoring algorithm for N , according to Theorem 3.1 and the Algorithm 2.3.
The factoring algorithm is defined as follows.

Algorithm 3.1 Algorithm for Factoring N = p2q

Input: A ciphertext c and the modulus N
Output: The prime factors p,q

1: Choose an integer 22k−1 < m̂ < 22k

2: Compute ĉ ≡ m̂2 (mod N)
3: Ask the decryption of ĉ from Algorithm 2.3
4: Algorithm 2.3 output m < 22k−1, else reject
5: Compute gcd(m̂+m,N)
6: If gcd(m̂+m,N) = 1, then reject
7: If gcd(m̂+m,N) 6= 1, then return p2

8: Compute N
p2

= q
9: Return the prime factors p, q

3.2 Computational Equivalent

If a new cryptosystem is designed, we are expected to provide a comparison of
the relative difficulty of breaking the scheme into the solving any existing hard
problems. Now, we show that breaking the Rabin-p cryptosystem is indeed
reducible to factoring the modulus N = p2q. Furthermore, the converse of
such statement is also true.

Lemma 3.1. Breaking the Rabin-p cryptosystem is reducible to factoringN =
p2q.

Proof. Suppose there exists an algorithm A1 with the ability to factor the
modulus N = p2q, then we obtain the primes p and q. Thus, we can solve the
Rabin-p’s ciphertext c ≡ m2 (mod N) directly by using the Algorithm 2.3.
�
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Lemma 3.2. Factoring N = p2q is reducible to breaking the Rabin-p cryp-
tosystem.

Proof. Conversely, suppose there exists an algorithmA2 that breaks the Rabin-
p cryptosystem. Then such algorithm is able to find the message m from the
ciphertext c ≡ m2 (mod N). By using the same approach as Theorem 3.1,
hence A2 can proceed to compute m̂. Finally, with the help of Algorithm 3.1,
A2 can easily factor the modulus N = p2q. �

Theorem 3.2. Breaking the Rabin-p cryptosystem is equivalent to factoring
the modulus N = p2q.

Proof. This assertion is a consequence from Lemma 3.1 and Lemma 3.2. �

3.3 Analysis via Continued Fraction’s Method

We begin with the definition of the continued fractions, which serves as a very
useful mathematical tool and has been applied in many cryptanalytic works.

Definition 3.1 (Continued Fractions). Hardy and Wright (1965). The contin-
ued fraction of a real number R ∈ R is an expression of the form

R = a0 +
1

a1 +
1

a2+
1

a3+...

(1)

where a0 ∈ Z and ai ∈ N − {0} for i ≥ 1. The numbers a0, a1, a2, . . .
are called the partial quotients. The equation (1) can be denoted as R =
[a0, a1, a2, . . .] and are called the convergents of the continued fraction expan-
sion of R. If R is a rational number then the continued fraction expansion of
R is finite.

Following this definition is an important theorem of the continued fraction
which be used widely throughout this proposal. This theorem simply says, the
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unknown integers x and y can be recovered from the list of continued fraction
expansion of a rational number R satisfying the given inequality.

Theorem 3.3 (Legendre’s Theorem). Hardy and Wright (1965) Let R is a
rational number. Let x, y ∈ Z, y 6= 0 and gcd(x, y) = 1. Suppose∣∣∣∣R− x

y

∣∣∣∣ < 1

2y2

Then x
y is a convergent of the continued fraction expansion of R.

We outline the analysis by continued fraction’s method as follows. Sup-
pose c and N are the parameters from the Rabin-p cryptosystem. Since we
have the ciphertext c (mod N), thus c < N . Therefore c can be written as
c = a+ bpq or c = a′ + b′p2 for some integer a, a′, b, b′.

Theorem 3.4. (Asbullah and Ariffin, 2017) Let c = a+ bpq for some positive
integer a and b. If a < q

2 and b < p, then b
p is a convergent of the continued

fraction expansion of c
N .

Theorem 3.5. (Asbullah and Ariffin, 2017) Let c = a′+ b′p2 for some positive
integer a′ and b′. If a′ < p2

2q and b′ < q, then b′

q is a convergent of the continued
fraction expansion of c

N .

3.4 Analysis via Coppersmith’s Method

Coppersmith (1997) invented a significantly powerful method for finding small
roots of modular polynomial equations. This method has found many different
applications in the area of cryptography and vastly useful tool for cryptanalysis
Galbraith (2012). We now reproduce Coppersmith’s theorems for the benefit
of the reader.

Theorem 3.6. Coppersmith (1997) Let N be an integer of unknown factoriza-
tion. Let fN (x) be a univariate, a monic polynomial of degree δ. Then we can
find all solutions x0 for the equation fN (x) ≡ 0 (mod N) with |x0| < N1/δ

in polynomial time.
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Theorem 3.7. May (2003) Let N be an integer of unknown factorization,
which has a divisor b > Nβ . Furthermore, let fb(x) be a univariate, a
monic polynomial of degree δ.Then we can find all solutions x0 for the equa-
tion fb(x) ≡ 0 (mod b) with |x0| < 1

2N
β2/δ in polynomial time.

We now analyze the Rabin-p cryptosystem based on the Theorem 3.6 and
Theorem 3.7 and obtain the following results. Suppose c,m and N are the
parameters from the Rabin-p cryptosystem.

Theorem 3.8. (Asbullah and Ariffin, 2017) Let c ≡ m2 (mod N) and N =
p2q. If m < 23k/2 then m can be found in polynomial time.

Proof. Suppose c ≡ m2 (mod N) and N = p2q. Consider the univariate,
monic polynomial fN (x) ≡ x2 − c ≡ 0 (mod N). By applying Theorem
3.6 we set δ = 2. Hence the root x0 = m can be recovered if m < N1/δ =
N1/2 ≈ 23k/2. �

Theorem 3.9. (Asbullah and Ariffin, 2017) Let c ≡ m2 (mod p2) such that p2

is an unknown factor for N . If m < 22k/3 then m can be found in polynomial
time.

Proof. Suppose c ≡ m2 (mod p2) such that p2 is an unknown factor for N .
Consider fp2(x) ≡ x2− c ≡ 0 (mod p2) with p2 ≈ N2/3 ≈ 22k. We can find
a solution x0 = m if m < 1

2N
β2/δ < N (2/3)2/2 = N2/9 ≈ 22k/3. �

Remark 3.2. Therefore in order to avoid both attacks, we would setm > 23k/2

in the Rabin-p encryption algorithm.

3.5 Resistant to Novak’s Attack

In general, the decryption algorithm of a Rabin-like cryptosystem consists of
two parts. The first part is for the modular exponentiation operation of which
in order to obtain the message in the form of m modulo p and m modulo q
from its corresponding ciphertext c. The second part then would be the recom-
bination process using the Chinese Remainder Theorem (CRT) algorithm to
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recover the proper message m. Most side channel attacks deal with the first
part. For instance, the work by Kocher (1996), Schindler (2000) and Brum-
ley and Boneh (2005) which uses the timing attack approach or the result in
Messerges et al. (1999) enables side channel attack using the power analysis
approach.

Alternatively, Novak (2002) proposed a very efficient side channel attack
upon the CRT computation (i.e. the second part of the Rabin-like decryp-
tion). We observe that all variants of the Rabin-like cryptosystem (except
Rabin-Williams scheme) involves a process that hardly depends on the CRT
or Garner’s algorithm (i.e. the process to recover all the modulo square roots).
Therefore, Novak’s attack is indeed applicable for such computation, of which
can result in the insecurity of the cryptosystems Okeya and Takagi (2006).

Remark 3.3. We reason that since our proposed scheme does not need to
carry out any CRT computation, thus the Novak’s attack is not applicable on
the Rabin-p cryptosystem (i.e. resilient against Novak’s attack).

3.6 Resistant to Chosen Ciphertext Attack

Notice that the factoring algorithm mentioned by the Algorithm 3.1 could pro-
vide a way to launch a chosen ciphertext attack upon the proposed scheme in
polynomial time, hence resulting in the system totally insecure in this sense.
Therefore, to provide security against this kind of attack, we could consider
implementing as a Key Encapsulation Mechanism (KEM) following the KEM
framework for Rabin cryptosystem as proposed in Dent (2003). We will dis-
cuss this issue further in details in Section 5.

4 COMPARATIVE ANALYSIS

This chapter gives comparison of the basic scheme of Rabin-p cryptosystem
and other existing implementable, standardized public key encryption (basic)
schemes that are based on the intractibility of the integer factorization problem;
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namely the HIME(R), Rabin-SAEP+ and RSA-OAEP.

4.1 Security Level and Key Lengths

For the primes p, q of the Rabin-p cryptosystem should be chosen to be in-
tractable to factor the modulus of N = p2q. We choose the NIST Recommen-
dations (2016) Giry (2017) for factoring modulus which present the appropri-
ate key length for user’s desired level of protection, as follows. Note that for
good protection against quantum computers, the modulus size of 15360-bit is
sufficent, unless Shor’s algorithm applies Giry (2017).

Date Security Level Modulus Size (bits) Prime Size (bits)
2016 - 2030 (& beyond) 128 3072 1024
2016 - 2030 (& beyond) 192 7680 2560
2016 - 2030 (& beyond) 256 15360 5120

Table 1: Recommendation modulus length for Rabin-p cryptosystem

We suppose that the bit-length k of the modulus N = p2q for Rabin-p
and HIME(R) and the bit-length K of the modulus N = pq for Rabin-SAEP+
and RSA-OAEP have been selected so that the security level of these moduli
against integer factorization attacks is the same. The bit-length of the prime
factors of a Rabin-p or HIME(R) k-bits modulus is denoted by t (so t = k

3 ),
while the bit-length of the prime factors of an RSA-OAEP or Rabin-SAEP+
K-bits modulus is denoted by T (so T = K

2 ). Hence we have the comparative
tables as follows.

Algorithm Modulus length Public key Private key
Rabin-p N = p2q N p
HIME(R)Hitachi (2002) N = p2q N p, q
Rabin-SAEP+Shoup (2002) N = PQ N P,Q
RSA-OAEPBellare and Rogaway (1995) N = PQ N, e P,Q, dP , dQ

Table 2: Key bit length vs HIME(R), Rabin-SAEP+ and RSA-OAEP
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Algorithm Modulus length Public key Private key
Rabin-p 3072 3072 1024

7680 7680 2560
15360 15360 5120

HIME(R)Hitachi (2002) 3072 3072 2048
7680 7680 5120
15360 15360 10240

Rabin-SAEP+Shoup (2002) 3072 3072 3072
7680 7680 7680
15360 15360 15360

RSA-OAEPBellare and Rogaway (1995) 3072 3072∼6144 6144
7680 7680∼15360 15360
15360 15360∼30720 30720

Table 3: Modulus, Public key(s) and Private key(s) of Rabin-p,
HIME(R), Rabin-SAEP+ and RSA-OAEP

4.2 Performance Efficiency

In this section, we compare the speed of Rabin-p when compared to HIME(R),
Rabin-SAEP+ and RSA-OAEP through its most fundamental complexity order
(i.e. basic textbook operation speed without any enhancement). As a note,
any enhancement for the benchmark algorithms will result also in Rabin-p
cryptosystem using the enhanced operation mechanism.

4.2.1 Encryption

The computational steps that dominate the execution time of the encryption
process for the Rabin-p, HIME(R), Rabin-SAEP+ and RSA-OAEP are:

1. Rabin-p: m2 (mod N). That is, a modular squaring operation with a
k-bit modulus.

2. HIME(R): m2 (mod N). That is, a modular squaring operation with a
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k-bit modulus.

3. Rabin-SAEP+: m2 (mod N). That is, a modular squaring operation
with a K-bit modulus.

4. RSA-OAEP: me (mod N). That is, a modular exponentitation opera-
tion with a K-bit modulus.

4.2.2 Decryption

The computational steps that dominate the execution time of the decryption
process for the Rabin-p, HIME(R), Rabin-SAEP+ and RSA-OAEP are:

1. Rabin-p: c
p+1
4 (mod p). That is, one modular exponentiations with t-

bit modulus.

2. HIME(R): c
p+1
4 (mod p) and c

q+1
4 (mod q). That is, two modular ex-

ponentiations with t-bit moduli.

3. Rabin-SAEP+:c
P+1
4 (mod P ) and c

Q+1
4 (mod Q). That is, two modu-

lar exponentiations with T -bit moduli.

4. RSA-OAEP: cdP (mod P ) and cdQ (mod Q). That is, two modular
exponentiations with T -bit moduli.

4.3 Complexity Comparison

Algorithm Encryption Decryption
Complexity Complexity

Rabin-p O(n2) O(n3)
HIME(R) O(n2) O(n3)
Rabin-SAEP+ O(n2) O(n3)
RSA-OAEP O(n3) O(n3)

Table 4: Performance efficiency between the Rabin-p, HIME(R),
Rabin-SAEP+ and RSA-OAEP
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4.4 Plaintext to Ciphertext Ratio

Message expansion is another angle where comparison can be made. This area
is closely related to bandwith overhead. The larger the expansion the more
bandwith is utilized. We provide a table for comparison against the HIME(R),
Rabin-SAEP+ and RSA-OAEP. Plaintext to ciphertext ratio is denoted as m :
c.

Algorithm m : c

Rabin-p 2 : 3
HIME(R)Hitachi (2002) ∼ 3 : 4
Rabin-SAEP+Shoup (2002) 1 : 4
RSA-OAEPBellare and Rogaway (1995) ∼ 3 : 4

Table 5: Plaintext to Ciphertext Ratio vs HIME(R), Rabin-SAEP+ and
RSA-OAEP

4.5 Conclusion

The ability of Rabin-p cryptosystem to have the following characteristics:

1. Key length comparable to currently deployed public key encryptions al-
gorithms;

2. Fast performance during encryption and decryption;

3. Fair message expansion rate;

4. Does not have decryption failure,

makes Rabin-p cryptosystem a possible candidate for a secure national en-
cryption scheme. Moreover, with the beneficial features that the Rabin-p has,
the possibility of seamless deployment within current public key infrastruc-
ture cannot be ruled out. Additionally, for good protection against quantum
computers, the modulus size of 15360-bit is sufficent, unless Shor’s algorithm
applies.
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5 RABIN-P KEY ENCAPSULATION
MECHANISM: THE PROPOSAL

The security of a modern public key cryptosystem is usually viewed from their
mathematical hard problem and its security model. In this section, we pro-
pose the design for Rabin-p cryptosystem in the setting of Key Encapsulation
Mechanism (KEM) following the KEM framework for Rabin cryptosystem as
proposed in Dent (2003).

5.1 Preliminaries

In order to facilitate fundamental flow of knowledge, we lay down some def-
initions. We begin with important definitions concerning with the material of
related cryptographic hard problems. Secondly, we outline our security model.

5.1.1 Related Cryptographic Hard Problem

Definition 5.1 (Cryptographic Hard Problem). (Menezes et al., 1997). A cryp-
tographic hard problem is defined as a concrete mathematical object which is
easily to compute in one direction, but very hard to invert.

Definition 5.2 (Negligible Function). (Katz and Lindell, 2008). A function ε
is negligible if for every polynomial with integer coefficients f(·) there exists
an N > 0 such that for all integers n > N it holds that ε(n) < 1

f(n) .

Let A be a probabilistic polynomial time algorithm and a probability de-
noted as Pr. Then we have the following definitions.

Definition 5.3 (Integer Factorization Problem). (Hoffstein et al., 2008). Let
N be a positive integer. Then, the integer factorization problem (IFP) is de-
fined as the problem to find the prime factorization of N such that, N =
pr11 p

r2
2 p

r3
3 . . . prss where pi are distinct primes and ri ≥ 1. For our case, the

problem is to find the prime factors p and q from N = p2q.
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Definition 5.4 (IFP Hard Problem). (Katz and Lindell, 2008). Let the IFP is
defined as in Definition 5.3 with the particular modulus such that N = p2q.
Suppose [A(IFP ) = 1] is an event such that A is successfully factor p and
q given N = p2q, otherwise [A(IFP ) = 0]. We say that IFP (i.e. factoring
N = p2q) is hard if for all probabilistic polynomial time algorithm A there
exists a negligible function ε such that

Pr[A(IFP ) = 1] ≤ ε

Definition 5.5 (Rabin-p Hard Problem). Let the Rabin-p cryptosystem is as
defined as in Section 2. Suppose [A(Rabin−p) = 1] is an event such that A
successfully invert the Rabin-p cryptosystem and obtained the correct mes-
sage m, otherwise [A(Rabin−p) = 0]. As proven in Theorem 3.2 that breaking
Rabin-p cryptosystem is equivalent to factoring the modulus N = p2q, thus
Pr[A(Rabin−p) = 1] = Pr[A(IFP ) = 1]. We say that breaking the Rabin-p
cryptosystem is hard relative to IFP (i.e. Definition 5.4) if for all probabilistic
polynomial time algorithm A there exists a negligible function ε such that

Pr[A(Rabin−p) = 1] ≤ ε

5.1.2 Security Goals and Attack Models

The security of public key cryptosystem is usually categorized from the point
of view of their goals and attack models. The currently known standard goals
of public key cryptosystems are defined as follows.

Definition 5.6 (Indistinguishability). (Goldwasser and Micali, 1984). Indis-
tinguishability (IND) refers to the situation of given a ciphertext of one of the
two plaintexts (i.e. both plaintexts known to the adversary), and then any ad-
versary cannot distinguish which one is encrypted. This notion is rather ar-
tificial, but in considering provable security of a public key cryptosystem it is
usually convenient to employ this notion as the goal of the system.

On the other hand, the currently known standard attack models upon a public
key cryptosystem are as follows.

Remark 5.1 (Chosen Plaintext Attacks (CPA)). . In this model, an adversary
has access to an encryption oracle. That is, such adversary can choose a set
of plaintexts and obtain the corresponding ciphertexts.
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Remark 5.2 (Non-adaptive Chosen Ciphertext Attacks (CCA1)). . In this
model, an adversary has, in addition to the ability to the CPA adversary, ac-
cess to a decryption oracle before obtains a challenge ciphertext. That is, the
adversary can choose a set of ciphertexts and obtain the corresponding plain-
texts during this period (Naor and Yung, 1990).

Remark 5.3 (Adaptive Chosen Ciphertext Attacks (CCA2)). . In this model,
an adversary has, in addition to the ability of the CCA1 adversary, access to a
decryption oracle even after obtaining the challenge ciphertext. However, this
kind of adversary is prohibited from asking the oracle to decrypt the challenge
ciphertext itself (Rackoff and Simon, 1992).

Several security notions can be constructed by combining these goals and
attack models, and, of course, there are relations between some of these no-
tions. In fact, the following facts on such relations have been known so far
Watanabe et al. (2002). First, regarding the attack models, the power of the
adversaries gets stronger in the order CPA, CCA1, and CCA2, so does the
strength of the security notions. It is largely agreed upon that security against
CCA2 is one of the most important attributes of any public key cryptosystem
(Müller, 2001).

Secondly, in proposing a public key cryptosystem, it is conventional to
claim that the public key cryptosystem has the strongest security by showing
that it is secure in the sense of indistinguishability against chosen ciphertext at-
tacks (IND-CCA2). For instance see Bellare and Rogaway (1995), and Cramer
and Shoup (2003). Hence, formalizing and proving for any designated public
key cryptosystem resilient to such stronger attack model is very important.

5.1.3 Deterministic Encryption

We will start by considering deterministic encryption schemes.

Definition 5.1 (A Deterministic Encryption Scheme Dent (2003)). A deter-
ministic encryption scheme is a triple (G,E,D) where:
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1. an encryption algorithm, E, which takes as input a message m ∈ M
and the public key pk and outputs a ciphertext C ∈ C,

2. the decryption algorithm, D, which takes as input a ciphertext C ∈ C
and and the secret-key sk and outputs either a message m ∈ M or the
error symbol ⊥.

The weakest notion of security for a deterministic encryption scheme is
one-way security.

Definition 5.2. A deterministic encryption scheme (G,E,D) is said to be one-
way if the probability that a polynomial time attacker A can invert a randomly
generated ciphertext C = E(m, pk) (where m is chosen at random fromM is
negligible as a function of k. Such a cryptosystem is often said to be secure in
the OW-CPA model.

5.1.4 Key Encapsulation Mechanism - KEM

Technically, to use the public key systems in sending long messages is not
practical. Instead, they are frequently applied to exchange, symmetric keys,
which are comparatively short (Abe et al., 2008). The symmetric key is then
employed to encrypt the longer messages. The public key cryptosystem is
somehow relatively slow compared to its symmetric counterpart; thus it is not
suited for encrypting large bulk of information.

Essentially, Dent (2003) gives a generic construction method to allow an
algorithm designer to construct a KEM from almost any cryptographic prob-
lem. As a result, we propose a Rabin-p KEM, that is as secure as factoring, in
the random oracle model. Firstly, we recall the definition of the random oracle
model as follows.

Definition 5.3 (Random Oracle Model (Katz and Lindell, 2008)). A random
oracle is a function H(· ) : {0, 1}n −→ {0, 1}n that maps an input value to a
true random output value.
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In the random oracle model (ROM), one assumes that some hash function
is replaced by a random function accessible to the public. This means that the
adversary cannot calculate the result of the hash function itself, instead he must
query the random oracle. This also means that anyone, including the adversary
has access to the random oracle Coron et al. (2008).

Definition 5.4 (Key Encapsulation Mechanism (Dent, 2003)). A KEM is a
triple of algorithms:

1. a key generation algorithm, KEM.Gen, which takes as input a security
parameter 1k and outputs a public/secret key-pair (pk, sk),

2. an encapsulation algorithm, KEM.Encap, that takes as input a public
key pk and outputs an encapsulated key-pair (K,C) (i.e. C is sometimes
said to be an encapsulation of the key K),

3. a decapsulation algorithm, KEM.Decap, that takes as input an encap-
sulation of a key C and a secret-key sk, and outputs a key K.

We choose to approach provable security from an asymptotic point of view
and suggest that a scheme is secure if the probability of breaking that scheme
is negligible as a function of the security parameter.

5.2 The Proposal for Rabin-p KEM

5.2.1 The Security of Rabin-p Encryption

Clearly, Rabin-p does not achieve IND-CPA because Rabin-p encryption algo-
rithm as shown in Chapter 2 is deterministic. Next we discuss the onewayness
(OW) and unbreakability (UB) of Rabin-p.

As described and discussed in Section 2, the onewayness for Rabin-p scheme
or the Rabin-p decryption problem is: Given public key N and ciphertext c,
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find m such that E(N,m) ≡ m2 (mod N) ≡ c. Section 3 have proven that
under CPA the Rabin-p decryption problem is reduced to the integer fac-
torization problem (IFP). The proof includes an algorithm (See Section 3.2)
which chooses and encrypts a message which is larger than p2 and queries it to
the OW adversary. The adversary then returns a message less than p2. Utiliz-
ing the Euclidean algorithm on the two distinct messages enable the factoring
of the public key N . Let this algorithm (i.e. Algorithm 3.1) be named Rabin-
p factoring algorithm. By the proofs of Theorem 3.2 and by Definition 5.2,
hence the Rabin-p encryption achieves OW-CPA assuming that integer factor-
ization is hard.

Furthermore, from the public key of Rabin-p, which is in the form of N =
p2q where p and q are k-bit primes and p, q ≡ 3 (mod 4). The private key is
the prime p. Hence the Rabin-p private key problem can be stated as: Given
the public key, N , find the private key, a k-bit prime p such that p2 divides N .
As such, the Rabin-p private key problem is exactly the integer factorization
problem under CPA and this is correctly proven in the previous section. Hence,
Rabin-p is UB-CPA, assuming integer factorization is hard.

5.3 Generic construction of secure KEM

Dent (2003) propose a simpler construction for designing a KEM based on
a deterministic encryption scheme with weak security assumptions.In other
words, a secure KEM is build from a deterministic encryption scheme that is
secure in the OW-CPA model. The following Algorithm 5.1, Algorithm 5.2
and Algorithm 5.3, gives a construction of a KEM based on a deterministic
asymmetric encryption scheme (G,E,D). The scheme makes use of a key
derivation function KDF and a hash function Hash. These functions will be
modelled as random oracles and so care must be taken that their outputs are
suitably independent.

Algorithm 5.1 Key Generation of a KEM derived from an OW-CPA secure,
deterministic encryption scheme

1: Key-generation is given by G, i.e. KEM.Gen = G
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Algorithm 5.2 Encapsulation of a KEM derived from an OW-CPA secure,
deterministic encryption scheme

1: Generate a suitably large bit-string x ∈M.
2: Set C1 := E(x, pk)
3: Set C2 := Hash(x)
4: Set C := (C1, C2)
5: Set K := KDF (x)
6: Output (K,C)

Algorithm 5.3 Decapsulation of a KEM derived from an OW-CPA secure,
deterministic encryption scheme

1: Parse C as (C1, C2).
2: Set x := D(C1, sk). If x =⊥ then output ⊥ and halt.
3: Check that C2 = Hash(x). If not, output ⊥ and halt.
4: Set K := KDF (x)
5: Output K

This construction also has the advantage that the decryption algorithm need
not return a unique solution but need only return a small subset of the message
space that includes the original message, as, with high probability, the original
message will be the only message in the subset that hashes to give the correct
value ofC2. We will make heavy use of this fact in the speciflcation of Rabin-p
KEM.

Theorem 5.1 (Dent (2003)). Suppose that (G, E, D) is a deterministic encryp-
tion algorithm that is secure in the OW-CPA model. Then the KEM derived
from (G, E, D) in Table 4 is, in the random oracle model, IND-CCA2 secure.

Proof. Appendix B of Theorem 4 in Dent (2003) �

5.4 The Design of Secure Rabin-p KEM

In this work, we will view the Rabin-p as a KEM-DEM framework, and study
only the KEM component. Security analysis for Rabin-p KEM instead of a

42 International Journal of Cryptology Research



Rabin-p Key Encapsulation Mechanism for CyberSecurity Malaysia MySEAL Initiative

hybrid scheme is more elegant because the KEM-DEM framework has speci-
fied the required security level for KEM relating directly to security of Rabin-p
scheme. This section presents the security of Rabin-p as a KEM, following the
KEM framework for Rabin as proposed in Dent (2003).

Now we are ready to present our KEM design for the Rabin-p cryptosys-
tem. The same procedure is retained for the key generation as described in
Algorithm 2.1 and output the public key N = p2q and the private key p. We
begin with the key generation algorithm as follows.

Algorithm 5.4 Rabin-p KEM Key Generation

Input: The size k of the security parameter.
Output: The public key N and the private key p.

1: Generate two random and distinct primes p and q such that p, q ≡ 3
(mod 4) where 2k < p, q < 2k+1.

2: Compute N = p2q.
3: Return the public key N and the secret key p.

Algorithm 5.5 Rabin-p KEM Encapsulation Algorithm
Input: The public key N .
Output: A ciphertext tuple (K,C).

1: Choose a random integer 23k/2 < x < 22k−1.
2: Compute C1 ≡ x2 (mod N).
3: Compute C2 = Hash(x).
4: Set C := (C1, C2)
5: Set K := KDF (x)
6: Output (K,C).

5.5 Security Proof for Rabin-p KEM

We proposing a new KEM whose security is equivalent to factoring, that is the
Rabin-p KEM. The Rabin-p KEM construction will be based on the generic
construction given in Section 5.3 and the Rabin-p encryption from Chapter 2.
The algorithms of Rabin-p KEM is described by Algorithm 5.4, Algorithm 5.5
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Algorithm 5.6 Rabin-p KEM Decapsulation Algorithm
Input: A ciphertext C and the private key p.
Output: The value K.

1: Parse C as (C1, C2)
2: Compute w ≡ C1 (mod p).
3: Compute xp ≡ w

p+1
4 (mod p).

4: Compute i = c−x2p
p .

5: Compute j ≡ i
2xp

(mod p).
6: Compute x1 = xp + jp.
7: If x1 < 22k−1, then return x = x1. Else set x = p2 − x1.
8: Check that C2 = Hash(x). If not, output ⊥ and halt.
9: Let x be the unique square root of C1 modulo N for which Hash(x) =
C2.

10: Set K := KDF (x)
11: Output K.

and Algorithm 5.6, respectively. The provable security proof of the proposed
Rabin-p KEM can be summed up in the following theorem.

Theorem 5.2. Providing the factoring problem is hard, Rabin-p KEM is IND-
CPA secure in the random oracle model.

Proof. It is proven in Theorem 3.2 that the Rabin-p function is one-way pro-
viding that the factoring assumption is hard. Therefore, given that the fac-
toring problem is intractable, by Theorem 5.1 the proposed Rabin-p KEM is
IND-CPA secure in the random oracle model. �

Remark 5.4. Observe that, the Rabin-p cryptosystem falls prey to the integer
factorization based-encryption security incompatibility in the same way as Ra-
bin cryptosystem (Rabin, 1979). This incompatibility is first found by Williams
(1980) in Rabin cryptosystem and was formally stated and proven in Paillier
and Villar (2006). A simplified statement of the security incompatibility is:
If an encryption scheme OW-CPA implies integer factorization problem, then
the scheme is totally broken under CCA. Therefore, particularly in our case,
it is necessary to reduce the security claims of Theorem 5.1 which originally
proved for IND-CCA2 security to only achieve IND-CPA secure.
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6 SUGGESTED IMPLEMENTATION PRACTICES

6.1 Key Generation Procedure

A practical key generation methodology for factoring based cryptosystems are
already established and well-developed. In implementing the Rabin-p key gen-
eration procedure properly, we suggested the implementers to utilize the key
generation mechanism provided in Giry (2017) and Shoup (2006) satisfying
the condition within Section 2.2 in Section 2.

6.2 Rabin-p Encryption Procedure

Section 2(in Section 2.3) and Section 3 (in Section 3.3, Section 3.4) lists out
strict conditions for variables within Rabin-p encryption procedures. These
conditions have to be satisfied in order for Rabin-p security properties to be
realized.

6.3 Rabin-p Decryption Procedure

For implementers that wish to optimize the decryption procedure, we suggest
the the implementers to follow the mechanism as described in Section 2(in
Section 2.4) and in Section 3.

The next subsection discuss the computational running time for both the
encryption and decryption process for Rabin-p cryptosystem.

6.4 Encryption Computational Running Time

The Rabin-p encryption process involves a squaring and a modular reduction
process. Its total running time is O(14k2 + 4k).
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6.5 Decryption Computational Running Time

The Rabin-p decryption process involves 1 modular exponentiation, 2 mod-
ulo reduction, 1 division over the integers, 1 modular inverse and 1 addition
process. Its total running time is O(3k3 + 142k2 + 154k + 3).

6.6 Empirical Performance Data

These experiments were conducted using Microsoft Visual Studio 2010 on
ASUS Model G551J, Windows 8.1 with Intel(R) Core(TM) i7-4710HQ CPU
2.50GHz and 4.00GB RAM.

6.6.1 Rabin-p Encryption

Table 6 shows the computational time of Rabin-p encryption algorithm when
executing on specific numbers of data.

Number of
data encrypted

Time
(ms)

100 13
500 76
1000 138
5000 717

10000 1430

Table 6: Rabin-p encryption algorithm execution time.

6.6.2 Rabin-p Decryption

Table 7 shows the computational time of Rabin-p decryption algorithm when
executing on specific numbers of data.
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Number of
data decrypted

Time
(ms)

100 21
500 83
1000 156
5000 842
10000 1538

Table 7: Rabin-p decryption algorithm execution time.

7 INTELLECTUAL PROPERTY STATEMENT
FOR THE SUBMISSION OF RABIN-P KEY
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