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ABSTRACT 

This paper presents new model to study the survivability of ad hoc network in which 

node behaviors are statistically correlated. The model tries to identify explicitly the 

correlated node events that cause network to isolate. The model characterizing the 

node behavior transition based on Semi Markov process and predicts how nodes 

affected neighboring activity to which it is important for understanding their 

potential damages, and for developing countermeasures to secure and ensure 

survivable of mobile ad hoc network. For survivability analysis, the model 

introduces correlated degree  as a new function of survivability to measure nodes 

connectivity. The study evaluates the impact of correlated node behavior particularly 

selfish, malicious and fails nodes toward network resilience and survivability. The 

results show that correlated node behaviors have more adverse effects on the 

survivability. 

 

Keywords: Semi Markov process, survivability analysis, correlated degree, nodes 

connectivity. 

 

1. INTRODUCTION 

Node behavior plays an important role in performance analysis of 

mobile and wireless networks. In large ad hoc networks, node may change 

its behavior from behave to misbehave unavoidably which threaten the 

correct functioning of nodes. When node misbehave, it directly affects the 

connectivity and availability of the network (Xing and Wang (2006a)). 

Furthermore, misbehave node also has major effect on route discovery, 

packets forwarding, and network control message (Rai (2010), Xing and 

Wang (2006b) and Sterbenz et al. (2010)). In real network scenarios, 

misbehave nodes can be resulted from other nodes behavior as well. This 

scenario is called correlated behavior. For example, if a node has more and 

more neighbors failed, it may need to load more traffic originally forwarded 

by those failed neighbors, and thus might become failed faster due to 
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excessive energy consumption. Similarly, it is also possible that the more 

malicious neighbors a node has, the more likely the node will be 

compromised by its malicious neighbors. Eventually, misbehave node leads 

to node failures. When failures occur, the network suffers from degraded 

performance because of the unavailability of the failed nodes. The 

subsequent impact could range from insignificant topological survivability 

to devastating network shutdown.  

 

In this paper, we study correlated node behavior using epidemic-

based propagation model to capture correlated behavior events. We 

developed a correlated node behavior model that captures the spatial 

dependent between nodes, thereby capturing the isolation effect of 

misbehave node across the network. Our approach is based on viewing 

dynamic topology of ad hoc network and using Semi Markov process to 

define stochastic node behavior. To evaluate the survivability of ad hoc 

networks, we extend the model presented in (Xing (2010)) to a setting 

where nodes are spatially correlated.  

 

 

2. RELATED WORKS 

There are several researches discussing on correlated node behavior 

in various contexts. In Neumayer et al. (n.d.) a framework is presented to 

model correlated effects caused by disasters on networks; nonetheless, the 

model is limited to bipartite networks and vertical regional disasters. 

Another work discusses availability of storage systems in the presence of 

independent and correlated failures (Bakkaloglu (n.d.)), where correlated 

failures are modeled based on datasets using conditional probabilities and 

the beta-binomial model. A tunable failure correlation model is reported in 

Nath et al. (2006) that allows different correlation levels in failures based 

on the traces. In Thanakornworakij et al. (2011), the reliability of a grid-

computing system is evaluated considering the failure correlation of 

different subtasks executed by the grid; component failures are assumed 

independent, however. Moreover, a framework for modeling software 

reliability based on Markov renewal processes has been reported in Ning 

and Yang (2007) and Dai and Xie (2005) that is capable of incorporating 

the possible dependencies among successive software runs.  

 

Albeit the works discussed in above studies on correlated behavior 

specifically node failure which deal with systems or network reliability and 

availability, nevertheless none of them is considering the unique feature of 

ad hoc networks and the potential impact of all kinds of node behaviors. We 
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know that from literature (Azni et al. (2011)), correlated node behavior will 

result in unstable network which impact survivability, reliability and 

availability. It is also proven that the impact of correlated misbehave node 

is quite challenging due to multiple attacks and failures caused by node 

mobility, energy depletion and Denial of Services (DoS) attacks. Therefore, 

it is vital to model correlated node behavior to evaluate the survivability of 

a topological network that closely represents the actual behavior.  The 

works (Xu and Wang (2010) and Kong and Yeh (2009)) are relevant to this 

work as they assess survivability of two common types of networks, 

random and scale-free, in the presence of independent failures. While these 

papers consider both independent and correlated failures and their effects on 

network survivability, however, they do not provide a systematic stochastic 

approach to model correlated node behavior.  
 

 

3. STOCHASTIC CORRELATED NODE BEHAVIOR 

To understand how nodes are correlated in ad hoc network, we first 

show the characteristic of node behavior transition which will be later used 

to quantify correlated node behavior model using propagation theory in 

epidemiology. In ad hoc networks, nodes are dynamically and arbitrarily 

change its behavior from cooperative to misbehave node. For example, 

nodes may fail due to software bugs or battery depletion, so a node may be 

unable to communicate with other nodes if its neighbors are all failed. 

Nodes may also behave selfishly by not forwarding packets for other nodes 

in order to save their battery energy, which will also tamper a normal 

communication services. Nevertheless, once a cooperative node is 

compromised by malicious nodes, it may launch aggressive attacks to other 

cooperative nodes. For example, Dos attacks with node mobility capability 

may be able to move around the entire network, to adjust transmission 

power dynamically, or even to propagate DoS attacks by compromising  

their cooperative neighbors (Xing and Wang (2006a)).  Considering the 

potential impacts of various correlated node behaviors, we characterize 

node behavior transition according to Figure 1 below and introducing an 

additional assumption that all nodes operate independently in the following 

four states:  

 

• Cooperative Nodes are active in route discovery and packet 

forwarding, but not in launching attacks.  

• Failed Nodes are not active in route discovery. 
• Malicious Nodes are active both in route discovery and launching 

attacks. 
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• Selfish Nodes are active in route discovery, but not in packet 
forwarding. They tend to drop data packets of others to save their 

energy so that they could transmit more of their own packets and also 

to reduce the latency of their packets.  

 

Whenever node joints the network, it is assume as normal or 

cooperative. In epidemiology term, we define cooperative node as 

susceptible assuming that all nodes have the capability to change their state 

to misbehave (infective) nodes and failed (remove) nodes due to various 

reasons.  

 

                                               
Figure 1: Node behavior transition vs. Compartmental diagram 

 
Unlike existing epidemic models, this model captures that a node  may 

become infected by its own behavior such that at cooperative state (C), 

node is exposed to become failed node due to energy exhaustion, 

misconfiguration, and thus it may change its state either to selfish (S), 

malicious (M) or failure (F) node. On the other hand, a selfish or 

cooperative node can become malicious due to being compromised or failed 

due to power depletion. A malicious node can become a failed node, but it 

will not be considered to be cooperative or selfish any more even if its 

disruptive behaviors are intermittent only. A failed node can become 

cooperative again if it is recovered and responded to routing operations. 

 

Based on the node classification describe above and in Azni et al. 

(2012), we use a Semi-Markov process to model node behavior transitions 

and analyzed the stochastic properties of correlated node behavior on 

epidemic theory. Due to the fact that node in MANETS is more inclined to 

be failed over time, we find that, the probability that node changes its 

behavior dependent on time. Therefore, node transition cannot simply 

described by Markov chain because of its time-dependent property. The 

semi-Markov process denoted by 
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1( ) ,n n nZ t X t t t += ∀ ≤ ≤ ∀             (1) 

with a state space { , , , }.C S M FΩ =  
nX  denotes the embedded Markov 

chain of ( ),Z t  which has a finite state space ,Ω  and the nth state visited 

(Wang and Park (2010)). Thus, 
nX  is irreducible and ergodic and ( )Z t  is 

the state of process at its most recent transition. The transition probability 

from state i  to state j  is defined as follows                  

1 1limPr( , | )i n n n n
t

P X j t t t X i+ +→∞
= = − ≤ =  

        
1Pr( | )n nX j X i+= = =                (2)   

Let ijP  and ijT be the transition probability and transition time from state i  

to j
 
respectively, for ,i j∈Ω , then the process { ( )}Z t can be described by 

a transition probability matrix (TPM) � ( )ijP=  and a transition time 

distribution matrix � ( ( ))ijF t= ⋅ �� ( )ijP=  and � ( ( ))ijF t=  are given by 
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where ( )xF t  is the cumulative distribution function (CDF) of ijT  for 

, .i j∈Ω  The state transition diagram of semi Markov node behavior model 

is shown in Figure 2.  
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Figure 2: Semi-Markov Process for Node Behavior 

 

For simplicity, we define state transition probability of ijP  as , ,a b c  

and .d  Let the probability of dropping packets due to selfishness and the 

probability of forwarding packets due to altruistic nature shown by the node 

a and b respectively and they are independent of each other. Let c be the 

probability of injecting packets due to malicious activity and d is the 

probability of loss packets due to exhausted battery power, out of 

transmission range or malfunction. Probability of recovery shown by e 

define the recovery of node from failure state to cooperative again after it 

has been recovered, recharged or repaired. We can then derive the steady-

state transition probability distribution πɶ  by solving the following set of 
equations 

 

Pπ π=ɶ ɶ  

1,i

i

π
∈Ω

=∑   0.π ≥                                         (4) 

 

Given the fraction of time πɶ  that the node stays in each state and the mean 

residence times 
iT  for each state, it is easy to calculate the steady-state 

probability 
iπ  of the node staying in transmission radius r   

 

[ ]

[ ]

i
i

j jj

E T

E T

π
π

π
=
∑

                                           (5) 

 

We model correlated node behavior using epidemiology theory by 

Andersson (2000) and represent the network topology as undirected 

weighted graph. In the network, two nodes have a link if they are within the 

transmission range with each other and a neighborhood of node ,u  denoted 

by ,uN  is a subset of such that every node in this subset has an edge from 
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node u  to node ,υ  i.e., { ( , ) }.uN u u Eυ= ∈  Thus, each edge ( , )u Eυ ∈  is 

associated with correlated function ( )eω  which represent infection rate 

,S M

u uυ υβ β  or removed rate ���
�
 or ���

�
	 The model also allows node to join 

the network after node recovery or forwarding with .uυδ  Thus, the 

correlated functions of node u  can be subsequently computed using 

equation (5) are then given by 

 

,

,

u

u i i

i S M

υ
υβ π π

=

= ∑                                          (6) 

���
, ,

u

i i

i C S M

υπ π
=

= ∑                                          (7) 

,

,

u

u i i

i S F

υ
υδ π π

=

= ∑                                          (8) 

where 
u

iπ  is the percentage of the time spend by node u  in state .i  As node 

u  can be infected only by its neighbors,  is statically dependent on 

 and the status of its neighbors. It means node  is not infected at 

time step  if and only if it was not infected by time step  and no 

infected nodes in the transmission radius it resides connected to node  

during the last time step. Since the status of a neighbor also depends on its 

own neighbors, conceptually, the status of all nodes is statically correlated 

in space and time. Therefore, the dependence of node  can be shown as 

 

]( ) ( ) ( )
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]( ) ( )

( 1) ( )[ u u

t tP N S N F d− = = = =��

�

]( ) ( )

( 1) ( )[ u u

t tP N M N F d− = = = =��

�  

]( ) ( )

( 1) ( )[ u u S

t t uvP N S N C b δ− = = = =  

]( ) ( )

( 1) ( )[ u u F

t t uvP N F N C b δ− = = = =                            (9) 

 

where a, b, c and d  is used to denote the status of node u at time t as in 

Figure 2. Given node u is susceptible at time t, the probability that the node 

u remains susceptible at the next time step can be defined as 
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( ) ( ( 1) ( ) ).u u uS t P N t b N t b= − = =  From equation (10), the model implies 

that  

( ) ( ( ) )
u

S

s uv uI t P N t aβ= =                                         (10) 

( ) ( ( ) )
u

M

m uv uI t P N t cβ= =                                     (11) 

( )uR t = ��
 (( ( ) ) ( ( ) ) ( ( ) ))u u uP N t a N t b N t c= + = + =               (12) 

 

Therefore the definition of ( ), ( )
u us mI t I t  and ( )uR t  yield that for 

( ) {1,2,3, , }uR t u N= ∀ ∈ …  

 

( , ) )

( ) [ ( ( ) ( ) )(1 ( )
u uu u u s m u

u v E

S t P N t b N t b I I R
∈

= = = − + +∑       (13) 

 

Combine with (10), (11) and (12), (13) provides recursive relationship 

between ( )uN t  and ( 1),uN t +  for ,uu N∈  and gives a formal stochastic 

correlated node behavior model. This model characterized the evolution of 

correlated node transition probabilities ,ijP with ,uvβ  ��
, uvδ  due to node 

infection and removal. Thus, the basic differential equations that describe 

the rate of change of susceptible, infective, and remove nodes are given by  
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,
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i S M

dR t

dt =
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 �                                                   (17) 

 

4. K- CORRELATED SURVIVABILITY 

In this section, we describe a model to evaluate the survivability of 

ad hoc networks in the presence of correlated behavior. K-correlated is a 

study of edge connectivity of the correlated function known as correlated 

degree. Previous study (Xing (2010)) has shown survivability on k-
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connectivity on individual nodes, however, due to correlated nature of 

nodes behavior, k-connectivity it is not accurate to analyze the survivability 

on correlated node behavior. Supposed that N nodes in a mobile ad hoc 

network are randomly and uniformly distributed over a 2-D square with 

area A. The node transmission radius, denoted by r, is assumed to be 

identical for all nodes. Thus, the underlying communication graph of a 

mobile ad hoc network is modeled by a undirected weighted graph 

( , )G G V E=  where V  denotes the vertex set with N N=  and an edge E

exists between two vertices only if their distance is no greater than r with 

the correlated function : ( ) ,P E G ω→  interpreted as the probability of the 

edge being connected. The weighted assign to the edge ( )e E G∈  denoted 

with ( )eω  also known as edge connectivity. We assume that ( ) 0eω ≥  for 

all edges .e  Figure 3 shows the network model of an ad hoc network 

describes above.  

M
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b,
 F
b
(t)

C, Fc(t) C, Fc(t)

b,
F b
(t)

d,Fd(t)

d,Fd(t)

d,F
d (t)

 
Figure 3: Network Model with correlated node behavior 

 

In order for nodes to get connected, the edge connectivity must satisfy the 

following requirements 

 

max( , ) ( , )uvu v d dω ω= ≤  

 

( , ) ,uvu vω δ≥  if and only if ,u vϑ ϑ  are adjacent in ( , ).G ω      (18) 

 

where 
uvd  is the Euclidean distance between u  and v  and uvδ  are the 

forwarding capacity of node u  and .v  Let 
uω  denote the correlated degree 

of ( , ),uN E G ω∈  that is calculated using equation (6-8). We say that G  is 

k-correlated if ( , )u vω δ≥  hold for every pair of , .u v N∈  δ  denotes the 

forwarding capacity of 
uω  which indicate cooperative behavior of 
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neighboring nodes. If ( , ) ,u vω δ≥  node is dropping its packets and 

connection could not be establish, thus node will be isolated from the 

networks.  

 

To explain node isolation problem, let 
i

uN  refer to the number of 

neighbors of node u  at state { , , }.i S M F∈ We refer selfish and malicious 

nodes together as misbehaving nodes, denoted as 
SMn  and 

Fn  as failed 

nodes. A set of 
i

uN ϑ⊆  of k  vertices is called k-isolated if it has edge 

connectivity ( , ) ,u vω δ≤  where an outgoing edge is an edge between a 

vertex in 
i

uN  and vertex in .ϑ  
 

Proposition 1: Given the correlated degree of node ( )uω δ≥  then 

node u is connected to the network, and if otherwise node u  is 

isolated from the network. Probability of node being isolated 

denoted by 

( ) ( )SM u uP ω δ ω δ= < =  

( ) )SM FP n n δ ω δ= + = =  

1 (1 )b δ= − −                                                     (19) 

 

where b is the probability of node in cooperative state define in node 

transition  above.  

 

Proposition 2: Given a network G  with N  nodes ( 1)N ≫  and a 

connectivity requirement ,w  let 
SMP  denote the probability of node being 

misbehave and isolated, and µ  denote the average number of nodes within 

one nodes transmission range, then the k-correlated survivability of G  is 

approximated by  

( , (1 ))
( , ) 1

( )

N

sm
uv

w P
S w G

w

µ Γ −
≈ − Γ 

                        (20) 

 

Given proposition 2, the node is said to be k-correlated if it is ( , )ω δ -edge-

connected. The physical meaning of this definition is that if a node's 

cooperative degree is ω  then it may communicate with the nodes other than 

its neighborhood via ω  disjoint outgoing paths. Thus, the network 

survivability of ,G  denoted by ( ),uvS G  is defined as the probability that 

nodes in G  are connected with cooperative edge .δ   
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5. NETWORK SURVIVABILITY EVALUATION 

We verify the correctness of our correlated node behavior theory on 

the network survivability. In simulation, all network parameters are set to 

the default value given in Table 1 below. Next, we explain our simulation 

results. 
 

Table 1: The Network Simulation Set Up 
 

Parameter Setting 

Simulation area 1000 m x 1000 m 

Transmission range 200 meter 

Mobility model Random Way Point 

Movement features Avg. speed 4 m/s/ pause time 1 s 

Initial Energy 100 Ws 

Link capacity 11 Mbps 

Traffic load 100 connections, 8 packet per sec 

Simulation time 300s 

 

The effect of Cooperativeness of Correlated Node 

As explain above, correlated node degree is represented by edge 

connectivity .δ  The higher the ,δ  it implies that the node is strongly 

connected. To observe the effect of probability of cooperation ,b  we set 

0.7δ =  for cooperative threshold.  Figure 4 shows the analytic results of 

survivability under different nodes range 5, 15, 25, 50 nodes respectively. It 

is observed that survivability incline steady line with fewer nodes. This is 

due to the misbehavior node effect are less. Thus, the effect of node 

behavior is tractable with fewer nodes. Cooperative nodes are affected by 

correlated degree ω  to obtain a higher survivability.  Due to that, it is 

necessary to have a higher packet forwarding rate b  in order for network to 

survive. When drop packets are higher, the nodes become less cooperative 

and network survivability is impossible to achieve.  
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Figure4: Effect on survivability of correlated degree ω  

 

The effect of Correlated Misbehave Node (selfish and malicious) 

Similar to that in Figure 4, the plot in Figure 5 shows that the survivability 

decreases as b  decrease. The survivability does not change significantly at 

the beginning especially if network scalability is less. In contrast, 

survivability for fewer nodes starts to decline faster compared to networks 

with large nodes. Network also becomes unstable when the δ  less than 0.7.  

From Figure 5 the network survivability decreases very fast due to the 

packet loads increase. This is due to nodes behave maliciously and 

disconnected from the network. Thus the load originally routed to the node 

will be redistributed to neighboring nodes which cause chain reaction. This 

cause the node cluster will be isolated from the giant network as explain in 

equation (19). It also can be seen that network with more nodes could not 

sustain it survivability when network under attacks.  
 

 
Figure 5: Effect on survivability of node isolation SMP  
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The Effect of Correlated Node Failure  

For highly survival network, the effect of node failure is more significant, 

e.g., the survivability drop to almost 0 when 0.7.δ <  Compare to malicious 

and selfish nodes, failed nodes shown severe effect on network 

survivability. The severer impact of node failures is due to the fact that node 

failures are also isolated from the network, which reduces the density of 

active nodes. Therefore, the probability of network failure cannot be 

ignored especially for a large scale network. 

 

 
 

Figure 6: Effect on survivability of probability of failed node ( )
FNP  

 

6. CONCLUSION 

In this paper, we developed an analytical model to study the impact 

of correlated node behavior on network survivability, which is defined as 

the probabilistic k-correlated of the network. We derived the approximation 

of the network survivability by using an edge connectivity function .ω  As a 

conclusion, the impact of node behaviors on network survivability can be 

evaluated probabilistically from equation (20) which can be further used as 

a guideline to design or deploy a survivable of wireless ad hoc network 

given a predefined survivability preference.  
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