International Journal of Cryptology Research 1(2): 179-189 (2009)

GCD Attack on the LUC4 Cryptosystem

'Wong Tze Jin, “Mohamad Rushdan Md. Said, *Mohamed Othman
and *Kamel Ariffin Mohd. Atan
Institute for Mathematical Research, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia.
3Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
E-mail: 'tjiwong1979@ gmail.com, *rushdan@math.upm.edu.my

1,2,4

ABSTRACT

LUC, cryptosystem is derived from a fourth order linear recurrence relation and is
based on the Lucas function. This cryptosystem is analogous to the RSA, LUC and
LUC; cryptosystems. Therefore, the security for this cryptosystem is similar to the
RSA cryptosystem. This paper reports an investigation into the GCD attack on the
LUC, cryptosystem and GCD attack is one of the polynomial attacks on LUC,
cryptosystem. The GCD attack can succeed if two messages differ only from a known
fixed value A and are RSA-encrypted under same RSA-modulus 7.

INTRODUCTION

In 1978 Rivest, Shamir, and Adleman discovered the first practical
public-key encryption and signature scheme, now referred to as RSA. The
RSA scheme is based on another hard mathematical problem, the
intractability of factoring large integers. This application of a hard
mathematical problem to cryptography revitalized efforts to find more
efficient methods to factor. The 1980s saw major advances in this area but
none, which rendered the RSA system insecure. These are based on the
discrete logarithm problem.

As we have known, the security is the crucial part of the
cryptosystem. If we do not want to lose any investment or do not want to
disclose any information which may be hacked by hacker, we require an
extensively safe and secure cryptosystem. LUC, cryptosystem is a public
key cryptosystem derived from the fourth order linear recurrence relation and
analogue to the RSA and LUC cryptosystems. The aim of this research is to
analyze and implement this system. Based on the analysis and
implementations, the security aspects will be looked into and appear to
depend on the intractability of factorization. There is a possibility that our
research will accomplish that goal. Thus, we will decrease the risk of losing
our investment or secret information.
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LUC, cryptosystem is analog to the RSA, LUC and LUGC;
cryptosystems, which is derived from a fourth order linear recurrence
relation and based on the Lucas function. Therefore, the security of this
cryptosystem is similar to the RSA cryptosystem. As we know, the security
aspect is a crucial part in the public key cryptosystem. There are numerous
mathematical attacks on RSA-type cryptosystem, one of them is polynomial
attacks. The polynomial attacks are exploiting the polynomial structure of
RSA. The GCD attack is one of the polynomial attacks. The aim of this
research is to analyze and implement LUC, cryptosystem. If two messages
differ only from a known fixed value A and are RSA-encrypted under same
RSA-modulus n, then it is possible to recover both of them. This situation
occurs quite often, as for example:

— texts differing only from their date of compilation;

— letters sent different addressees;

— retransmission of a message with a new ID number due to an
error. ..

LUC4 CRYPTOSYSTEM

As in the RSA, LUC and LUC; cryptosystem, the strength of the
system to be constructed depends on the difficulty of factoring large number.
Thus, it is necessary to pick two large secret primes p and g, the product of N
which is part of the encryption key. The encryption key is (e, N) which is
made public. Note that, e must be chosen so that it is relatively prime to the

function ®(N)= E because it is necessary to solve the congruence
ed =1modP(N) to find the decoding key d. In practice, since P(N)
depends on the type of an auxiliary polynomial, we choose e prime to p —1,
g-1, p+1, g+1, pz—l , qz—l , p3—1 , q3—1 , p3+p2+p+l,
g’ +q* +q+1 to cover all possible cases.

With these preliminary observations, a public-key cryptosystem will
be set out based on the quartic recurrence sequence V, derived from the
quartic polynomial,

x'=Px’+0x* —Rx+S=0. (1)
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Therefore, the quartic recurrence sequence define as
Vn(P’ Q; R; S) = PVn—l - QVn—Z + RVn—3 - SVn47 forn>4 (2)

with initial values Vo (P,Q.R,S) = 4, Vi(P,Q.R.S) = P, V»(P,O.R.S) = P> - 20,
and V3(P,Q,R.S) = P’ - 3PQ + 3R.

In LUC4 cryptosystem, the sixth order of Lucas sequence is necessary
to calculate the second plaintext. Therefore, we consider the sextic
polynomial

28— b + bax* — bax® + bax® — bsx + bg = 0, (3)

which help us to define the sixth order of Lucas sequence. Thus, the sextic
recurrence sequence define as

V,(b,by,b3.by b5, bg) =BV, =DV, 5 +bV, 3 =DV, 4 +bsV, s—bV, ¢,
forn>6, 4)

with initial values Vo= 6, Vi = by, Vo= b= 2by , V5 = b’ 3biby + 3bs, Vy =
b* — 4b’b, + 2by* + 4biby —4by, and Vs = b,® — 5b°by + 5biby* + 5b°b; —
5babs — S5hiby + 5bs.

Now, the encryption function is defined by

E(P,Q,R)
=(V.(P,Q,R,1),V.(Q,PR-1,P* + R* =2Q,PR—1,0,1),V.(R,Q, P,1))
=(C,,C,,C;)mod N,

%)

where N = pq as above, (P,Q,R) constitutes the message and the encryption
key, (e,N). V,(P,Q,R,1) and V,(R,Q,P,1) are the e-th term of the quartic

recurrence and V, (Q,PR -1,P*+R*-20Q,PR-1,0,1) is e-th term of the
sextic recurrence defined earlier.

The decryption key is (d,N) where d is the inverse of ¢ modulo
®(N). To decipher the message, the receiver must know or be able to
compute ®(N) and then calculate
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D(Cl ’ C2 ’ C})

=(V,(,,C,,C,,1),V,(C,,C,C,-1,C +C,’ —2C,,C,C, —1,C,,1),
Vd (C37C2 7C171))

=(P,Q,R)mod N,

(6)

which recovers the original message (P,Q,R).

In decryption, g(x)=x"-Cxx’+C,x>—C,x+1, is given but not
f(x)=x"—Px’+0x" —Rx+1 and so we have to deduce the type of f in
order to apply the algorithm correctly.

GCD ATTACK

To succeed in the GCD attack, we need two plaintexts, which M, be
the first plaintext and M, = M; + A be the second plaintext. Let the C; =
EM,) and C, = E(M,) be the corresponding ciphertexts. Then, the
polynomial X and Y € Z,[x] defined as

X(x)=E(x)—Ciand Y(x) = E(x + A) - G, @)

Because of M, is the root of polynomial X(x) and Y(x), we will get the
polynomial

W(x) = ged(X(x), Y(x)) = x — M,. ®)

Finally, solving the polynomial W(x) will give the plaintexts M, and M, = M,
+ A

Now, let us use this idea to attack the LUC, cryptosystem. First, we choose
(P,Q,R) to be the first set of the plaintext and

(P,0,,R)=(P+A,0,,+A, R +A) be the second set of the plaintext and let
(C1,0,,.R3)=ER+Q,+R)mod n and (C,,,0,,,R,;)=E(P,+(Q,.+R,)
mod n be the corresponding ciphertexts, where E(P. +Q,,+R.) mod n is the

encryption function, which was defined previously and the encryption key e
is relatively prime to n. Then, by the Dickson polynomial, the polynomial

X, and Y € Z [x,,x,,x,] can be defined as
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X, (X, %5, %3)
=V,(x,x,,x;,1) —C,; modn

=V (x,x,,x,1)=-V,(B,0,,R,,1) modn

<] <] (1) e . .
(=D e—i—2j=3k\i+j+k\i+]j
_Z:‘;;(e z—2j—3kj( i+j+k j( i+ j( i j

e=2i-3j-4k i j
1 X, x;

SlBl0 eyt Ye—i—2j-3k\(i+ j+kYi+)
0 oro\e—i—2j—3k i+j+k i+ i

Re—Zi—3j—4leile Il’lOd n

B e Yemim2i-3\i+ ki)
—,=0/=0 —\e—i—2j-3k i+j+k i+ ;

e=2i-3j-4k i e=2i-3j-4kip Jj
X X x,'x) - P, O/R,/’ mod n, (©)]

X
5

i =

X

—

where 2i—3j—4k<e.

X5 (%%, %3)
=V,(x3,x,,x,1)—C, ;mod n

=V (x;,x,,x,) =V (R,0,,F,1) modn

l<] <] |<] ik R - .
_Tes e(=1) e—i—2j=3k\i+j+k\i+]
_Z:‘;;(e i—2j- 3kj( i+j+k j( i+j j( i j

e=2i-3j—4k i j
X X, X, X,

_L%H%H%J et Yemim2j-3kYit jHkYi+]
im0 moxo\e—i—2j—3k i+j+k i+ ;

Rle—Zi—3j—4k QIIR] Il’lOd n

_WBBO ey Yemim2j-3kY it j+ki+ )
CHasle—i-2j-3k \ i+ j+k i+ i
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X x3e—2i—3j—4kx2ix Jj_ Rle—Zi—3j—4k QliRj m()d n, (10)
where 2i—3j—4k<e.

Y (x;, x5, X;)
=V,(x +A,x, +A,x; + A1) —C,  mod n
=V.(x +Ax, +Ax, +A D) —-V.(P+A,0, +AR +A,1) modn

LIl sl oy —i—2i-3kYi+ ] i+
_ (=D e—i—2j=3k\i+j+k\i+]j
_;;;(e—i—%—%j( i+j+k j( i+ j( i j

X (X, + AT (G, + A (x, + A

_m%% (=)™ Ye—i—2j-3k\i+j+k)i+j
Somle-i—2j-3k |\ i+j+k i+j N i

X (P +A) (0, + A (R +A) modn

1
GBIl gy Ye—im2j-3k i+ j+k)i+
iz0jsoko\ e —i—2j—3k i+ j+k i+j i

X [(x, +A) T2 (x, + A (x, + A

M

_(R +A)e—2i—3j—4k (Q1 +A)i(Rl +A).f] mod n, (11)

where 2i—3j—4k<e.
Y. (x,,x,,%;)
=V, (x5 +A,x, + A, x + A1) - C, ; mod n
=V (x, +Ax, +Ax, + A D=V (R +A,0,+A,P +A,1) modn

ZBH_%JBJ e(—l)”" e—i—2j-3k\i+j+k\i+]
CHaale—i-2j-3k \ i+ j+k i+ i

X (X, + A) T (x, + A (x, + A
]

el oyt Ye—i—2j-3kY i+ j+kY i+
Sioc\e—i—2j-3k i+j+k i+j i
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X (R +A) 7 (Q,+A) (P, +A) modn

B J%% e(=1)"*  Ye—i—2j-3k\i+j+k\i+]
CHasle—i-2j-3k \ i+ j+k i+j i
x [(x3 +A)e—2i—3j—4k (x2 +A)i(x1 +A)/
_(Rl+A)e—2i—3_f—4k(Ql+A)i(R +A)7] m()d n, (12)
where 2i—3j—4k<e.
XZ(XI,XZ,X3)
EKL@J@;JJE+%2—b@%%—L%J}%lzmﬁn

_ 2 2
=V (x,,xx,—Lx " +x —2x,,xx,—1x,,1)

-V,(Q,,BR -1,B*+R’>-2Q,,PR —1,0,,1) modn

L L i +iz+i
: e(—1)1+istis
_ZZZZZ( pyra 3~3_4i4—5i5j

0i,=0i3=0i4=0i5=0
(e—il—Zi2 3i, —4i, — 5i J(ll+lz+l3+l4+lsJ
X
I +i, +iy i, i I +i,+i,+i,

Lti i +i (G +h 5 G+, e—iy~2i, ~3iy —4iy ~5is
X .. . . (x,)
i +i, +1, i +1i, i

X (x,20 =D (] + x,° = 2x,)"

EJ Léj Lij L?J Lij e(_l)i1+i3+i5
9)%)3)3) 3 FER -]

i1=01, =01, =0i,=0i5 =0 —2i, —3i, — 4i, — Sis

e—i, —2i,—3i,—4i, = 5i; \(i, +1i, +i, +i, +ij
X
I i, i i, +is i +i,+i,+i,

y ll'?'lzi"l3""l4 ll""lz""% i+, Q)" i, ~2iy ~3iy—4i, ~Sis
i +i,+i i +1, i

x (PR, —1)""" (P’ + R’ ~-20,)" mod n
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zj 3J 4J (_1)i1+i3+i5
_Z‘),z 02}2}2( e—i, —2i,—3i, — 4i4—5i5j

e—i, —2i,—3i,—4i, = 5i; \(i, +1i, +i, +i, +i
X
I+, i i, +is i +i,+i,+i,

A A
X
i +i, +i, i +i, i

X [(xz)e—il —2[2 —3i3 —4i4 —Sis (x1x3 _ 1)[1 +i3 (xlz + x32 _ 2x2)i2

13)

where 2i, —3i, —4i, —5i, —6i, <e.

Y, (x,,x,,x;)
=V (x, + A, (x, +A) (5, +A) =1, (x, + A)* + (x, + A)> = 2(x, + A),
(5, +A)(x; +A)-Lx, +AD)—C,, modn
=V (x, + A, (x, +A) 5, +A) =1, (x, + A)* + (x, + A)> = 2(x, + A),
(x, +A)(x, +A) =1, x, +A])
—V,((Q +A), (R +A)(R +A)~1L(R+A) +(R +A) —2(Q, +A),
(P +A)R +A)—1,(Q, +A),1) mod n

sz LS (_1)i1+i3+i5
_ZZZZZ( e—i,—2i - 33—41'4—51‘5}

0i,=0i3=0i4=0i5=0
(e—il—Zi2 3i, —4i, — 5i J(ll+lz+l3+l4+lsJ
X
I+l +iy i, i I +i,+i+i,

% ll'?'lzi"l3""l4 ll""lz""% I +1, (x, + A" 2, ~3iy—4i, ~Sis
ll+12+l3 ll+12 ll

X ((x, + A)(x, + A) = D" ((x, + A) + (x, + A)” = 2(x, + A))”
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\.zj sz \.J (_1)i1+i3+i5
_zzzzzﬂﬂzbyﬁ%dJ

i1=0i,=0i3=0i,=0i5=0
e—i, —2i,—3i,—4i, = 5i; \(i, +1i, +i, +i, +i
X
I+, i i, +is i +i,+i,+i,

% ll'?'lzi"l3""l4 ll""lz""% I +1, (Q, + ) 2, ~3i,—4i, ~5is
ll+12+l3 ll+12 ll

X ((P+A)R, +A) —1)"*"
X((P+A) + (R +A)’ —2(0, + A))* mod n

(_Dil +i3+is
_2;§§;(1 %4hmij

e—i, —2i,—3i,—4i, = 5i; \(i, +1i, +i, +i, +ij
X
I +i, i +i, +is I +i,+i,+i,

A AT
X
i +i, +i, i +i, i

x[(xz +A)e—i1—2i2—3i3—4i4—5i5 ((xl +A)(x3 +A)_1)ll+l3

X((x, +A) +(x, +A)* = 2(x, + A))"
_ (Q1 + A)e—il —2i, —3iy —4i, —5is ((P1 + A)(Rl + A) _ 1)i1+i3
(P +A) +(R +A)* —2(Q, +A))? 1 mod n, (14)

where 2i, —3i, —4i, —5i, —6i, <e.

Since the equations (9), (10), (11), (12), (13), and (14) do not have linear
factor, then

W, =ged(X,(x,,x,,x,), Y, (x,x,,x)), for i=1,2,3
zx.—M,, (15)

International Journal of Cryptology Research 187



Wong Tze Jin et al.

where M= P,, M,= Q,, and M;= R;,. Thus, GCD attack cannot succeed on
LUC, cryptosystem.

DISCUSSION AND FURTHER RESEARCH

In this respect, we are able to make a conclusion, which is the security
of LUC, cryptosystems is good enough to protect our information. This is
because it does not allow the cryptanalyst to hack our information by GCD
attack. Therefore, the cryptanalyst cannot get any information from this
attack if we are using the LUC4 cryptosystem to encrypt our information.

For further research, we will be using other mathematical attacks to
analyze the security of LUC, cryptosystem. We will propose how they were
extended and will propose ways to minimize their effects and thus enables
the user to evaluate the potential danger of a future attack on the LUC,
cryptosystem.
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